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Introduction

As a query language, SQL is really quite small and should be easy to learn. A few basic 

ideas and a handful of keywords allow you to tackle a huge range of queries. However, 

many users often find themselves completely stumped when faced with a particular problem. 

You may find yourself in that group. It isn’t really a great deal of help for someone to say, 

“This is how I would do it.” What you need is a variety of ways to get started on a tricky 

problem. Once you have made a start on a query, you need to be able to check, amend, 

and refine your solution until you have what you need.

Two-Pronged Approach

Throughout this book, I approach different types of queries from two directions. The two 

approaches have their roots in relational algebra and calculus. Don’t be alarmed though—

I won’t be delving into any complex mathematics. However, understanding a question 

and developing an appropriate SQL query do require logical thinking and precise definitions. 

The relational algebra and calculus approaches are both useful ways to grasp the logic and 

precision that are required to get accurate results.

The first approach, which has its roots in relational algebra, looks at how tables need to be 

manipulated in order to retrieve the subset of data you require. I describe the different types 

of operations that you can perform on tables, including joins, intersections, selections, and 

so on, and explain how to decide which might help in particular situations. Once you under-

stand what operations are needed, translating them into SQL is relatively straightforward.

The second approach is what I use when I just can’t figure out which operations will 

give me the required results. This approach, based on relational calculus, lets you describe 

what an expected row in your result might be like; that is, what conditions it must obey. 

By looking at the data, it is surprisingly easy to develop a semiformal description of what 

a “correct” retrieved row would be like (and, by implication, how you would recognize an 

“incorrect” row). Because SQL was originally based on relational calculus, translating this 

semiformal description into a working query is particularly straightforward.

I am always surprised at which approach my students take when confronting a new 

problem. Some will instantly see the algebra operations that are needed; others will find 

the calculus approach more obvious. The choice of approach changes from query to query, 

from person to person, and (I suspect) from day to day. Having more than one way to get 

started means you are less likely to be completely baffled by a new problem.
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Who This Book Is For

This book is for anyone who has a well-designed relational database and needs to extract 

some information from it. You might have noticed in the previous sentence that the data-

base must be “well designed.” I can’t overemphasize this point. If your database is badly 

designed, it will not be able to store accurate and consistent data, so the information your 

queries retrieve will always be prone to inaccuracies. If you are looking to design a database 

from scratch, you should read my first book, Beginning Database Design (Apress, 2007). 

The final chapter of this book outlines a few common design problems you are likely 

to come across and gives some advice about how to mitigate the impact or correct 

the problem.

For this book, you do not need any theoretical knowledge of relational theory, as I will 

explain the relevant issues as they come up. The first chapter gives a brief overview of 

relational database theory, but it will help if you have had some experience working with 

databases with a few or more tables.

Objective of This Book

In this book, you will be introduced to all the main techniques and keywords needed to 

create SQL queries. You will learn about joins, intersections, unions, differences, selection 

of rows, and projection of columns. You will see how to implement these ideas in different 

ways using simple and nested queries, and you will be introduced to a variety of aggregate 

functions and summary techniques. You can try out what you learn using the sample data 

provided through the Apress web page for this book (http://www.apress.com/book/view/

1590599438). There you will find the Access database used for the examples in the book 

and some scripts to create the database on a number of other platforms.

Most important of all, you will learn different ways to get started on a troublesome 

problem. In almost all cases, there are several different ways to express a query. My objective 

is, for any particular situation, to provide you with a method of attack that matches your 

psyche and mood (just kidding). 
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Relational Database Overview

A query is a way of retrieving some subset of information from a database. That informa-

tion might be a single number such as a product price, a list of members with overdue 

subscriptions, or some sort of calculation such as the total amount of products sold in the 

past 12 months. Once we retrieve this subset of data, we might want to update the data-

base records or include the information in some sort of report.

Before getting into the nuts and bolts of how to build queries, it is necessary to under-

stand some of the ideas and terminology associated with relational databases. In particular, it 

is useful to have a way of depicting how a particular database is put together, that is, what 

data is being kept in what tables and how everything is interrelated.

It is imperative that any database has been designed to accurately represent the situa-

tion it is dealing with. With all the fanciest SQL in the world, you are unlikely to be able to 

get accurate responses to queries if the underlying database design is faulty. If you are setting 

up a new database, you should refer to a design book1 before embarking on the project.

In this chapter, we will look at some of the basic ideas of data models and relational 

theory so we can get started on formulating queries in SQL. Later chapters will expand on 

these ideas, as required. You will also learn about two important ways to think about queries: 

relational algebra and relational calculus.

What Is a Relational Database?
In simple terms, a relational database is a set of tables.2 Each table keeps information 

about aspects of one thing, such as a customer, an order, a product, a team, or a tourna-

ment. It is possible to set up constraints on the data in individual tables and also between 

tables. For example, when designing the database, we might specify that an order entered 

in the Order table must exist for a customer who exists in the Customer table. How the tables 

are interrelated can be usefully depicted with a data model.

1. For instance, you can refer to my other Apress book, Beginning Database Design: From Novice to 
Professional (Apress, 2007).

2. Really it’s a set of relations, but I’ll explain that in the “Introducing Tables” section.
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Introducing Data Models

A data model provides us with information about how the data items in the database are 

interrelated. In this book, I will use an example of a golf club that has members who belong to 

teams and enter tournaments. One convenient way to give an overview of the different 

tables in a database is by using the class diagram notation from the Unified Modeling 

Language (UML).3 In this section, we will look at how to interpret a class diagram.

A class is like a template for a set of things (or events, people, and so on) about which 

we want to keep similar data. For example, we might want to keep names and other details 

about the members of our golf club. Figure 1-1 shows the UML notation for a Member class. 

The name of the class is in the top panel, and the middle panel shows the attributes, or 

pieces of data, we want to keep about each member. Each member can have a value for 

LastName, FirstName, and so on.

Figure 1-1. UML representation of a Member class

Each class in a data model will be represented in a relational database as a table. The 

attributes are the columns (often referred to as fields) in the table, and the details of each 

member form the rows in the table. Figure 1-2 shows some example data.

The data model can also depict the way the different classes in our database depend on 

each other. Figure 1-3 shows two classes, Member and Team, and how they are related.

The pair of numbers at each end of the plays for line in Figure 1-3 indicates how many 

members play for one particular team, and vice versa. The first number of each pair is the 

minimum number. This is often 0 or 1 and is therefore sometimes known as the option-

ality (that is, it indicates whether a member must have an associated team, or vice versa). 

The second number (known as the cardinality) is the greatest number of related objects. 

It is usually 1 or many (denoted by n or *), although other numbers are possible.

3. If you want more information about UML, then refer to The Unified Modeling Language User Guide by 
Grady Booch, James Rumbaugh, and Ivar Jacobsen (Addison Wesley, 1999).
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Figure 1-2. A table representing the instances of our Member class

Figure 1-3. A relationship between two classes

Relationships are read in both directions. Reading Figure 1-3 from left to right, we have 

that one particular member doesn’t have to play for a team and can play for at most one 

team (the numbers 0 and 1 at the end of the line nearest the Team class). Reading from 

right to left, we can say that one particular team doesn’t need to have any members and 

can have many (the numbers 0 and n nearest the Member class). A relationship like the one 

in Figure 1-3 is called a 1-Many relationship (a member can belong to just one team, and 

a team can have many members). Most relationships in a relational database will be 

1-Many relationships.

For members of a team, you might think there should be exactly four members (say for 

an interclub team). Although this might be true when the team plays a round of golf, our 

database might record different numbers of members associated with the team as we add 

and remove players through the year. A data model usually uses 0, 1, and many to model 

the relationships between tables. Other constraints (such as the maximum number in a 

team) are more usually expressed with business rules or with UML use cases.4

4. For more information, see Writing Effective Use Cases by Alistair Cockburn (Addison Wesley, 2001).
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Introducing Tables

The earlier description of a relational database as a set of tables was a little oversimplified. 

A more accurate definition is that a relational database is a set of relations. When people 

refer to tables in a relational database, they generally assume (whether they know it or 

not) that they are dealing with relations. The reason for the distinction between tables and 

relations is that there is a well-defined set of operations on relations that allow them to be 

combined and manipulated in various ways.5 This is exactly what we need in order to be 

able to extract accurate information from a database. We won’t be covering the actual 

mathematics in this book, but we will be using the operations. So, in nonmathematical 

speak, what is so special about relations?

One of the most important features of a relation is that it is a set of unique rows.6 No 

two rows in a relation can have identical values for every attribute. A table does not gener-

ally have this restriction. If we consider our member data, it is clear why this uniqueness 

constraint is so important. If, in the table in Figure 1-2, we had two identical rows (say for 

Brenda Nolan), we would have no way to differentiate them. We might associate a team 

with one row and a subscription payment with the other, thereby generating all sorts of 

confusion.

The way that a relational database maintains the uniqueness of rows is by specifying 

a primary key. A primary key is an attribute, or set of attributes, that is guaranteed to be 

different in every row of a given relation. For data such as the member data in this example, 

we cannot guarantee that all our members will have different names or addresses (a dad 

and son may share a name and an address and both belong to the club). To help distin-

guish different members, we have included an ID number as one of the member attributes, or 

fields. You will find that adding an identifying number (colloquially referred to as a surrogate 

key) is very common in database tables. If MemberID is defined as the primary key for the 

Member table, then the database system will ensure that in every row the value of MemberID

is different. The system will also ensure that the primary key field always has a value. That 

is, we can never enter a row that has an empty MemberID field. These two requirements for 

a primary key field (uniqueness and not being empty) ensure that given the value of MemberID,

we can always find a single row that represents that member. We will see that this is very 

important when we start establishing relationships between tables later in this chapter. 

Once a table has a primary key nominated, then it satisfies the uniqueness requirement of 

a relation.

Another feature of a relation is that each attribute (or column) has a domain. A domain

is a set of allowed values and might be something very general. For example, the domain 

for the FirstName attribute in the Member table is just any string of characters, for example, 

“Michael” or “Helen.” The domain for columns storing dates might be any valid date (so 

that February 29 is allowed only in leap years), whereas for columns keeping quantities, 

5. The relational theory was first introduced by the mathematician E. F. Codd in June 1970 in his article 
“A Relational Model of Data for Large Shared Data Banks” in Communications of the ACM: 13.

6. More accurately, a relation is a set of tuples.
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the domain might be integer values greater than 0. All database systems have built-in 

domains or types such as text, integer, or date that can be chosen for each of the fields in 

a table. Systems vary as to whether users can define their own more highly specified domains 

that they can use across different tables; however, all good database systems allow the 

designer to specify constraints on a particular attribute in a table. For example, in a partic-

ular table we might specify that a birth date is a date in the past, that the value for a gender 

field must be “M” or “F”, or that a student’s exam mark is between 0 and 100. The idea of 

domains becomes important for queries when we need to compare values of columns in 

different tables.

When I refer to a database table in this book, I mean a set of rows with a nominated 

primary key to ensure every row is different and where every column has a domain of 

allowed values. Listing 1-1 shows the SQL code for creating the Member table with the 

attribute names and domains specified. In SQL, the keyword INT means an integer or 

nonfractional number, and CHAR(n) means a string of characters n long. The code also 

specifies that MemberID will be the primary key. (Listing 1-1 doesn’t create the relationship 

with the Team table yet.) The code is fairly self-explanatory.

Listing 1-1. SQL to Create the Member Table

CREATE TABLE Member (

MemberID INT PRIMARY KEY,

LastName CHAR(20),

FirstName CHAR(20),

Phone CHAR(20),

Handicap INT,

JoinDate DATETIME,

Gender CHAR(1))

Inserting and Updating Rows in a Table

The emphasis in this book is on getting accurate information out of a database, but the 

data has to get in somehow. Most database application developers will provide user-friendly 

interfaces for inserting data into the various tables. Often a form is presented to the user 

for entering data that may end up in several tables. Figure 1-4 shows a simple Microsoft 

Access form that allows a user to enter and amend data in the Member table.

It is also possible to construct web forms or mechanical readers—(such as the bar-code 

readers at supermarkets)—that collect data and insert it into a database. Behind all the 

different interfaces for updating data, SQL update queries are generated. I will show you 

three types of queries for inserting or changing data just so you get an idea of what they 

look like. I think you will find them quite easy to understand.
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Figure 1-4. A form allowing entry and updating of data in the Member table

Listing 1-2 shows the SQL to enter one complete row in our Member table. The data items 

are in the same order as specified when the table was created (Listing 1-1). Note that the 

date and string values need to be enclosed in single quotes.

Listing 1-2. Inserting a Complete Row into the Member Table

INSERT INTO Member

VALUES (118, 'McKenzie', 'Melissa', '963270', 30, '05/10/1999', 'F')

If many of the data items are empty, we can specify which attributes or fields will have 

values. If we had only the ID and last name of a member, we could insert just those two 

values as in Listing 1-3. Remember that we always have to provide a value for the primary 

key field.

Listing 1-3. Inserting a Row into the Member Table When Only Some Attributes Have Values

INSERT INTO Member (MemberID, LastName)

VALUES (258, 'Olson')

We can also alter records that are already in the database with an update query. Listing 1-4 

shows a simple example. The query needs to identify which records are to be changed (the 

WHERE clause in Listing 1-4) and then specify the field or fields to be updated (the SET 

clause).
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Listing 1-4. Updating a Row in the Member Table

UPDATE Member

SET Phone = '875077'

WHERE MemberID = 118

Designing Appropriate Tables

Even a quite modest database system will have hundreds of attributes: names, dates, 

addresses, quantities, descriptions, ID numbers, and so on. These all have to find their 

way into tables, and getting them in the right tables is critical to the overall accuracy and 

usefulness of the database. Many problems can arise from having attributes in the wrong 

tables. As a simple illustration of what can go wrong, I’ll briefly show the problems associated 

with having redundant information.

Say we want to add membership types and fees to the information we are keeping 

about members of our golf club. We could add these two fields to the Member table, as in 

Figure 1-5.

Figure 1-5. Possible Member table

If the fee for all senior members is the same (that is, there are no discounts or other 

complications), then immediately we can see there has been a problem with the data 

entry because Thomas Spence has a different fee from the other senior members. The 

piece of information about the fee for a senior member is being stored several times, so 

inevitably inconsistencies will arise. If we formulated a query to find the fee for seniors, 

what would we expect for an answer? Should it be $300, $280, or both?

The problem here is that (in database parlance) the table is not properly normalized.

Normalization is a formal way of checking whether attributes are in the correct table. It is 

outside the scope of this book to delve into normalization, but I’ll just briefly show you 

how to avoid the problem in this particular case.
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The problem is that we are trying to keep information about two different things in our 

Member table: information about each member (IDs, names, and so on) and information 

about membership types (the different fees). This means the Fee attribute is in the wrong 

table. Figure 1-6 shows a better solution with two classes: one for information about members 

and one for information about membership types. The tables have a 1-Many relationship 

between them that can be read from left to right as “each member has one membership 

type” and in the other direction as “a particular membership type can have many associ-

ated members.”

Figure 1-6. Separating members and their types

We can represent the model in Figure 1-6 with the two tables in Figure 1-7. (A few of the 

fields in the Member table have been hidden in Figure 1-7 just to keep the size manageable.) 

You can see that we have now avoided keeping the information about the fee for a senior 

member more than once, so inconsistencies do not arise. Also, if we need to change the 

value of the fee, we need to change it in only one place.

Figure 1-7. Member and Type tables

If we need to find out what fee Thomas Spence pays, we now need to consult two tables: 

the Member table to find his type and then the Type table to find the fee for that type. The 

bulk of this book is about how to do just that sort of data retrieval. We can formulate queries 

to accurately retrieve all sorts of information from several tables in the database.

Member Type
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At the risk of repeating myself, I do want to caution you about the necessity of ensuring 

that the database is properly designed. The simple model in Figure 1-6 is almost certainly 

quite unsuitable even for the tiny amount of data it contains. A real club will probably 

want to keep track of fees and how they change over the years. They may need to keep 

records of when members graduated from junior to senior. They may offer discounts for 

prompt payments. Designing a useful database is a tricky job and outside the scope of 

this book.7

Maintaining Consistency Between Tables

Even the smallest database will have many, many tables. We saw in the previous section 

that keeping just a tiny amount of data for members required two tables if it was to be 

accurately maintained. Database systems provide domains or other constraints to ensure 

that values in particular columns of a given table are sensible, but we can also set up 

constraints between tables.

Look at the modified data in Figure 1-8. What fee does Melissa McKenzie pay now?

Figure 1-8. Inconsistent data between tables

We can probably make an educated guess that Melissa is probably meant to be a 

“Junior” rather than a “Junor”, but we don’t want our database to be second-guessing 

what it thinks we mean. We can prevent typos like this by placing a constraint called a 

foreign key on the Member table. We tell the database that the MemberType column in the 

Member table can have only a value that already exists as a primary key value in the Type

table (for this example, that means it must be either “Junior”, “Senior”, or “Social”). The 

terminology for this is to “create the MemberType field as a foreign key that references the 

Type table.” With this constraint in place, “Junior” is OK because we have a row in the Type

7. For more information about database design, refer to my other Apress book, Beginning Database 
Design: From Novice to Professional (Apress, 2007).

Member Type
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table with “Junior” in the primary key, but “Junor” will not be accepted. In general, all 

1-Many relationships between classes in a data model are set up this way.

Listing 1-5 shows the SQL for creating the Member table with a foreign key constraint.

Listing 1-5. SQL to Create the Member Table with a Foreign Key

CREATE TABLE Member(

MemberID INT PRIMARY KEY,

LastName CHAR(20),

FirstName CHAR(20),

Phone CHAR(20),

Handicap INT,

JoinDate DATETIME,

Gender CHAR(1),

MemberType CHAR(20) FOREIGN KEY REFERENCES Type)

Most database products also have graphical interfaces for setting up and displaying 

foreign key constraints. Figure 1-9 shows the interfaces for SQL Server and Access. These 

diagrams, which are essentially implementations of the data model, are invaluable for 

understanding the structure of the database so we know how to extract the information 

we require.

Figure 1-9. Diagrams for implementing 1-Many relationships using foreign keys

Retrieving Information from a Database
Now that we have the starting point of a well-designed database consisting of a set of 

interrelated, normalized tables, we can start to look at how to extract information by way 

of queries. Many database systems will have a diagrammatic interface that can be very 

useful for many simple queries. Figure 1-10 shows the Access interface for retrieving the 

names of senior members from the Member table. The check marks denote which columns 

we want to see, and the Criteria row enables us to specify particular rows.

Access SQL Server
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Figure 1-10. Access interface for a simple query on the Member table

We can express the same query in SQL as shown in Listing 1-6. It contains three clauses: 

SELECT specifies which columns to return, FROM specifies the table(s) where the infor-

mation is kept, and WHERE specifies the conditions the returned rows must satisfy. We’ll 

look at the structure of SQL statements in more detail later, but for now the intention of 

the query is pretty clear.

Listing 1-6. SQL to Retrieve the Names of Senior Members from the Member Table

SELECT FirstName, LastName

FROM Member

WHERE MemberType = 'Senior'

These two methods of expressing a simple query are quite straightforward, but as we 

need to include more and more tables connected in a variety of ways, the diagrammatic 

interface rapidly becomes unwieldy and the SQL commands more complex.

Often, it is easier to think about a query in a more abstract way. With a clear abstract 

understanding of what is required, it then becomes more straightforward to turn the idea 

into an appropriate SQL statement. There are two different abstract ways to consider queries 

on a relational database. Because relational theory was developed by a mathematician, it 

is couched in quite mathematical terms. The two equivalent ways of thinking about queries 

are called relational algebra and relational calculus. Do not be alarmed! We will not be 

getting into quadratic equations or integration—I promise. However, these two methods 

might take a bit of getting used to, so treat the examples in this chapter as just a taster; we 

will be going over the details in later chapters.

Relational Algebra: Specifying the Operations

With relational algebra, we describe queries by considering a sequence of operations or 

manipulations on the tables involved. Some operations act on one table, while others are 
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different ways of combining data from two tables. (Remember that when I talk about tables, 

I really mean ones with unique rows.) Every time we use one of the operations on a table, 

the result is another table. This means we can build up quite complicated queries by taking 

the result of one operation and applying another operation to it.

We will look at all the different operations in detail throughout the book, but just as a 

simple example we will discuss how to use relational algebra to retrieve the names of the 

senior members of our golf club. We will need two operations. The select operation returns 

just those rows from a table that satisfy a particular condition. The project operation returns 

just the specified columns.

First we’ll get just the rows we need. We can say it like this:

Apply the select operation to the Member table with the condition that the
MemberType field must have the value “Senior”.

Clearly, this is all going to get a bit wordy as we apply more and more operations, so it 

is useful to introduce some shorthand, as shown in Listing 1-7.  (the Greek letter sigma) 

stands for the select operation, and the condition is specified in the subscript. For conve-

nience I have called the resulting table SenMemb.

Listing 1-7. The Select Operation to Retrieve the Subset of Rows for Seniors

Figure 1-11 shows the result of this operation. Having retrieved a table with the appro-

priate rows, we now apply the project operation to get the right columns. Listing 1-8 shows 

the shorthand for this, where  (pi) denotes the project operation and the columns are 

specified in the subscript.

Listing 1-8. The Project Operation to Retrieve a Subset of Columns

You can express the whole algebra expression in one go, as shown in Listing 1-9.

Listing 1-9. The Complete Algebra Expression

Figure 1-11 shows the original, intermediate, and final tables. Note that the interme-

diate and final tables are not permanent in the database.

The example in Figure 1-11 shows how we can apply two relational algebra operations 

in succession to retrieve a final relation with the required data. We do not really need the 

power of the relational algebra to visualize how to formulate a query this simple; however, 

most queries are not this simple.

)Member(SenMemb Senior''MemberType

)SenMemb(Final  FirstNameLastName,

)(Member)(Final Senior''MemberType FirstNameLastName,



CH AP T E R  1  ■  R E L AT I ON AL  D AT AB A SE  OV E R V I E W 13

Figure 1-11. Result of two successive relational algebra operations

Relational Calculus: Specifying the Result

Relational algebra lets us specify a sequence of operations that eventually result in a set of 

rows with the information we require. As we will see throughout this book, there may be 

several different ways of applying a sequence of relational operations that will retrieve the 

same data. The other method that relational theory provides for describing a query is rela-

tional calculus. Rather than specifying how to do the query, we describe what conditions 

the resulting data should satisfy. Once again, this may take a bit of getting used to, so we 

will go over all this more carefully in later chapters.

In nonformal language, a relational calculus description of a query has the following form:

I want the set of rows that obey the following conditions . . .

As with the algebra version, this can become very wordy, so shorthand is convenient, 

as shown in Listing 1-10.

Listing 1-10. General Form of a Query Expressed in Relational Calculus

{ m | condition(m) }

The part on the left of the bar will contain a description of the attributes or columns we 

want returned, while the part on the right describes the criteria they must satisfy. The 

letter m is a way of referring to a particular row (m) in a table, and we will need to intro-

duce other labels when we have several tables to contend with. An example is the best way 

to clarify what a relational calculus expression means. Listing 1-11 shows the relational 

calculus for the query to retrieve senior club members.

Listing 1-11. Relational Calculus to Retrieve Senior Members

{m | Member(m) and m.MemberType = 'Senior'}

MemberType=“Senior”(Member) LastName, FirstName MemberType=“Senior”(Member))
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We can interpret Listing 1-11 like this:

Retrieve each row (m) from the Member table where the  MemberType attribute of that
row has the value “Senior”.

We can further refine the query as in Listing 1-12, which retrieves just the names of the 

senior members.

Listing 1-12. Relational Calculus to Retrieve the Names of Senior Members

{m.LastName, m.FirstName | Member(m) and m.MemberType = 'Senior'}

We can interpret Listing 1-12 like this:

Retrieve the values of the FirstName and LastName attributes from all the rows m
where m comes from the Member table and the MemberType attribute of those rows
has the value “Senior”.

Why are we doing this? Admittedly, it is over the top to introduce this notation for such 

a simple query, but as our queries become more complex and involve several tables, it is 

useful to have a way to express the criteria in an unambiguous way. Also, SQL is based on 

relational calculus. In Listing 1-12 if you replace the bar (|) with the SQL keyword FROM 

and the “and” with the keyword WHERE, then you essentially have the SQL query of 

Listing 1-6.

Why Do We Need Both Algebra and Calculus?

It would be reasonable to also ask, why do we need either? As mentioned earlier, we do not 

need these abstract ideas for simple queries. However, if all queries were simple, you 

would not be reading this book. In the first instance, queries are expressed in everyday 

language that is often ambiguous. Try this simple expression: “Find me all students who 

are younger than 20 or live at home and get an allowance.” This can mean different things 

depending on where you insert commas. Even after we have sorted out what the natural-

language expression means, we then have to think about the query in terms of the actual 

tables in the database. This means having to be quite specific in how we express the query. 

Both relational algebra and relational calculus give us a powerful way of being accurate 

and specific.

So, we need a way of expressing our queries. Why not skip all this abstract stuff and go 

right ahead and learn SQL? Well, the SQL language consists of elements of both calculus 

and algebra. Ancient versions of SQL were purely based on relational calculus in that you 

described what you wanted to retrieve rather than how. In the SELECT clause you speci-

fied the attributes, in the FROM clause you listed the tables, and in the WHERE clause you 

specified the criteria (much as in Listing 1-6). Modern implementations of SQL allow you 
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to explicitly specify algebraic operations such as joins, products, and unions on the tables 

as well.

There are often several equivalent ways of expressing an SQL statement. Some ways are 

very much based on calculus, some are based on algebra, and some are a bit of both. I 

have been teaching queries to university students for several years. For some complicated 

queries, I often ask the class whether they find the calculus or algebra expressions more 

intuitive. The class is usually equally divided. Personally I find some queries just feel obvious 

in terms of relational algebra, whereas others feel much more simple expressed in rela-

tional calculus. Once I have the idea pinned down with one or the other, the translation 

into SQL (or some other query language) is usually straightforward.

The more tools you have at your disposal, the more likely you will be able to express 

complex queries accurately.

Summary
This chapter has presented an overview of relational databases. We have seen that a rela-

tional database consists of a set of tables that represent the different aspects of our data 

(for example, a table for members and a table for types). Each table has a primary key that 

is a field(s) that is guaranteed to have a different value for every row, and each field (or 

column) of the table has a set of allowed values (a domain).

We have also seen that it is possible to set up relationships between tables with foreign 

keys. A foreign key is a value in one table that has to already exist as the primary key in 

another table. For example, the value of MemberType in the Member table must be one of the 

values in the primary key field of the Type table.

It is often helpful to think about queries in an abstract way, and there are two ways to 

do this. Relational algebra is a set of operations that can be applied to tables in a database. 

It is a way of describing how we need to manipulate the tables to extract the information 

we require. Relational calculus is a way of describing what criteria our required informa-

tion must satisfy.

SQL is a language for specifying queries on a database. There are usually many equiva-

lent ways to specify a query in SQL. Some are like calculus, and some are like algebra. And 

some are a bit of both.
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C H A P T E R  2

Simple Queries on One Table

If a database has been designed correctly, the data will be in several different tables. For 

example, our golf database is likely to have separate tables for information about members, 

teams, and tournaments, as well as tables that connect these values, for example, which 

members play in which teams, enter which tournaments, and so on. To make the best use 

of our data, we will need to combine values from different tables. As we work through 

complicated combinations, we can imagine the set of rows resulting from each step being 

put into a “virtual” table. We can think of a virtual table as one that is made to order and 

is only temporary. At each step we may be interested in only some of the data in the virtual 

table. In this chapter, we will look at choosing values from just one table. The table may be 

one of the permanent tables in our database, or it may be a virtual table that has been 

temporarily put together as part of a more complicated query.

As an example in this chapter, we will look at the table containing information about 

members. We may want to see information about just some of the members (a subset 

of the rows), or we may want to see only some values for each member (a subset of the 

columns). Or, we may want a combination of both. We can think of a query to get a subset 

of information as “cutting” a subset of rows and columns from our table and then “pasting” 

them into a resulting virtual or temporary table, as shown Figure 2-1.
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Figure 2-1. Retrieving subsets of rows and columns from a single table

Simple queries like this can provide information for reports, subsets of data for anal-

ysis, and answers to specific questions. Figure 2-2 shows some examples for the Member

table from our golf club database.

A Subset of Rows Resulting Virtual Table

A Subset of Columns Resulting Virtual Table

A Subset of Rows and Columns Resulting Virtual Table
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Figure 2-2. Examples of simple queries on the Member table

Retrieving rows and columns uses the relational algebra operations select and project.

Nearly all queries will at some stage include the select and project operations.

a) Subset of rows: All the information about men

b) Subset of columns: 
 Phone list for all members

c) Subset of both rows and columns: 
 Handicaps for Junior members

d) A tiny (1 cell) subset:
 Member 228’s phone number
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Retrieving a Subset of Rows
Retrieving a subset of rows is one of the most common operations we will carry out in a 

query. In the following sections, we will look at retrieving rows from one of the original 

tables in our database. The same ideas apply to selecting rows from virtual tables resulting 

from other manipulations of our data.

Relational Algebra for Retrieving Rows

The relational algebra select operation retrieves rows from a table. To decide which rows 

to retrieve, we need to specify a condition for the operation. Basically, a condition is a 

statement that is either true or false. We apply the condition to each row in the table inde-

pendently, retaining those rows for which the condition is true and discarding the others. 

Say we want to find all the men our club, as in Figure 2-2a. Fortunately, when we designed 

our database in Chapter 1, we foresaw such a query and included an attribute Gender in 

the Member table. We want just that subset of rows where the value in the Gender field is 

“M”, so this becomes the condition for the select operation.

Listing 2-1 shows the notation for this operation. The Greek letter sigma ( ) is short-

hand for select, the table we are applying the operation to is in parentheses (Member), and 

the subscript Gender = 'M' is the condition.

Listing 2-1. The Select Operation to Retrieve All the Men from the Member Table

What if we want to find everyone with a handicap under 12? This will again be a subset 

of rows from the Member table, so the select operation will do the trick. The condition this 

time depends on the value in the Handicap column. We want any rows where the value of 

Handicap is less than 12. Listing 2-2 shows the relational algebra for retrieving the required 

rows. We will look more closely at how to express more complex conditions in the next 

section.

Listing 2-2. The Select Operation Used to Retrieve Members with Handicaps Under 12

Relational Calculus for Retrieving Rows

The relational algebra describes how we should retrieve the required information from 

our database; in the previous cases, it’s by saying “Go and get the subset of rows that satisfy 

this condition.” The relational calculus describes what the required information is like. 

(Member)M''Gender

(Member)12Handicap
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Listing 2-3 shows the shorthand for expressing the calculus for retrieving men from the 

Member table.

Listing 2-3. The Calculus Expression to Retrieve All the Men from the Member Table

{m | Member(m) and m.Gender = 'M'}

The part on the right of the vertical bar (|) is the description of the retrieved rows. The 

expression in Listing 2-3 can be interpreted as saying “I want a set of rows that come from 

the Member table, and each row must have ‘M’ as the value for the Gender attribute.”

The letter m in Listing 2-3 is officially called a tuple variable, but I’ll refer to it as a row 

variable (which is not strictly accurate but a bit easier to understand). I like to think of the 

variable acting like a finger, as in Figure 2-3. The finger (labeled m) points to each row in 

the Member table and checks to see whether it obeys the condition that its Gender attribute 

has the value “M”. As our queries get more complex, we will have many different fingers 

pointing at different tables.

Figure 2-3. Row variable m investigating each row of the Member table

SQL for Retrieving Rows

Listing 2-4 shows the SQL statement for retrieving information about the men in our 

golf club.

Listing 2-4. The SQL Statement to Retrieve All the Men from the Member Table

SELECT *

FROM Member

WHERE Gender = 'M'

This query has three parts, or clauses: The SELECT1 clause says what information to 

retrieve. In this case, * means retrieve all the columns. The FROM clause says which table(s) 

1. Note that in SQL the keyword SELECT just means that a given statement is a query for retrieving infor-
mation. It doesn’t mean that the statement is necessarily going to involve an algebra select operation.

m
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the query involves, and the WHERE clause describes the condition for deciding whether a 

particular row should be included in the result. Our condition says to check the value in 

the field Gender. In SQL when we specify an actual value for a character field, we need to 

enclose the value in single quotes, as in 'M'.

Retrieving a Subset of Columns
Now let’s look at how we can specify that we want to see only some of the columns in our 

result, perhaps just names and phone numbers as in Figure 2-2b. Once again, this is an 

operation that we can apply to an original table in our database or to a virtual table resulting 

from some complex combination of several tables.

Relational Algebra for Retrieving Columns

The relational algebra operation for retrieving a subset of columns is project, and we 

represent it with the Greek letter pi ( ). Listing 2-5 shows the algebra for selecting the 

names and phone numbers from our Member table.

Listing 2-5. The Project Operation to Retrieve Names and Phone Numbers from the 

Member Table

The columns we want to retrieve (LastName, FirstName, and Phone) are specified in 

the subscript.

Relational Calculus for Retrieving Columns

Our notation for expressing a calculus query is in two parts separated by a bar, as in 

Listing 2-6. The part on the left describes what information we want to retrieve (in this 

case the LastName, FirstName, and Phone columns), and the part on the right describes the 

condition. In this case, the condition is only that the row comes from the Member table 

because we want the information for all our members.

Listing 2-6. The Calculus Expression to Retrieve Names and Phone Numbers from the 

Member Table

{m.LastName, m.FirstName, m.Phone | Member(m) }

Once again, it is useful to think of the row variable m as being a finger pointing at each 

row, deciding whether it is to be included and then retrieving the specified attributes of 

that row.

(Member) Phone, FirstNameLastName,



CH A PT E R  2  ■  S IM P L E  QU E R IE S  O N  O N E  T AB LE 23

SQL for Retrieving Columns

We specify what columns we want to retrieve in the SELECT clause of an SQL query. Whereas 

previously we used * to say “return all the columns,” Listing 2-7 now specifies the subset 

of columns we want in our result.

Listing 2-7. The SQL for Retrieving Names and Phone Numbers from the Member Table

SELECT LastName, FirstName, Phone

FROM Member

Because we want to see all these column values for every row, this query doesn’t need a 

WHERE clause.

Using Aliases
The query in Listing 2-7 works just fine, but as our queries get more complicated and 

involved, we will have a number of different tables. Some of the tables may have the same 

column names, and we might need to distinguish them. Therefore, we can preface each of 

the attributes in our query with the name of the table that they come from, as in Listing 2-8.

Listing 2-8. Prefacing Attribute Names with the Table Name

SELECT Member.LastName, Member.FirstName, Member.Phone

FROM Member

Because typing the whole table name can become tiresome and also because in some 

queries we might need to compare data in more than one row of a table, SQL has the 

notion of an alias. Have a look at Listing 2-9.

Listing 2-9. Using an Alias

SELECT m.LastName, m.FirstName, m.Phone

FROM Member m

In the FROM clause, we have declared an alias or alternative name for the Member table, in 

this case m. We can give our alias any name or letter we like; short is good. Then in the rest 

of the query we can use the alias whenever we want to specify an attribute from that table.

Now compare our relational calculus expression in Listing 2-6 and the SQL in Listing 2-9. 

We can think of the alias in the SQL as serving the same purpose as the row variable in the 

calculus expression. SQL syntax is based very much on relational calculus. This may all 

seem unnecessary for a simple query, but as our queries get more complicated, the idea of 

row variables will simplify things a great deal and make it much easier to get the SQL state-

ments correct. I’ll use aliases in all the SQL queries from now on.
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Combining Subsets of Rows and Columns
In the previous sections, we saw the algebra operations select (a subset of rows) and project 

(a subset of columns) acting independently. One of the most powerful features of the algebra 

is that the result of an operation is another table (or, more formally, another set of unique 

rows). This means we can apply another operation to the result of the first operation and 

so build up complex queries.

We can use successive operations to create an algebra expression for the query in 

Figure 2-2c, retrieving the names and handicaps of junior members. First we find the 

rows for juniors using a select operation, and then we use a project operation to retrieve 

the required columns from the result. Listing 2-10 shows the full expression.

Listing 2-10. Combining a Select and Project Operation

LastName, FirstName,  Handicap ( MemberType = 'Junior' (Member))

As you can see, the algebra tells us how to get the result we want. First get the appro-

priate rows, and then get the required columns. The calculus doesn’t tell us how to carry 

out a series of steps; it just describes what the final set of rows will be like. Have a look at 

Listing 2-11.

Listing 2-11. Calculus Expression to Retrieve Handicaps of Junior Members

{m.Lastname, m.FirstName, m.Handicap | Member(m) and m.MemberType = 'Junior'}

The left side of the expression in Listing 2-11 says we are going to retrieve the LastName,

FirstName, and Handicap values from some row m. The right side of the expression tells 

us which rows to include. Picture a finger labeled m, as in Figure 2-3. The expression in 

Listing 2-11 says that our finger m is going to scan rows in the Member table and include 

those rows where the value of MemberType is “Junior”.

Now look at Listing 2-12, which shows the SQL for this query.

Listing 2-12. SQL Statement to Retrieve Handicaps of Junior Members

SELECT m.Lastname, m.FirstName, m.Handicap

FROM Member m

WHERE m.MemberType = 'Junior'

Compare the SQL in Listing 2-12 with the calculus expression in Listing 2-11, and you 

will see that they have all the same parts: an alias or row variable m declared for the Member

table, a condition to say which rows to include, and a list of which attributes or columns 

to retrieve.
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Saving Queries
I’ve been talking in a rather imprecise manner about “retrieving” rows and “returning” 

information. What happens to the rows that result from a query? In reality, we are not 

getting information and putting it anywhere; we are just looking at a subset of the infor-

mation in the tables in our database. If the data in the underlying database changes, then 

the results of our query will change too. A query is like a window on our database through 

which we can see just the information we require. It doesn’t hurt to think about the infor-

mation that results from a query being in the form of a “virtual” table as long as you realize 

it is just temporary. The images in Figure 2-2 are results of queries, but they are not real 

tables—just different windows into the underlying Member table.

It is possible to keep the result of a query in a new permanent table (sometimes called 

a snapshot), but we usually don’t want to do that because it will become out of date if the 

underlying data changes. What we usually want to do is save the instructions so that we 

can ask the same question another day. Consider our phone list query. Every so often after 

the membership of the club has been updated, we might want to see a new phone list. 

Rather than having to write the query in Listing 2-7 each time, we can save the instructions 

in what is known as a view. Listing 2-13 shows how we can create a view so we can see up-

to-date phone lists. We have to give the view a name, which can be anything we want 

(PhoneList seems sensible), and then we supply the SQL statement (as in Listing 2-7) for 

retrieving the appropriate data.

Listing 2-13. Creating a View So You Can Use the Same Query Many Times

CREATE VIEW PhoneList AS

SELECT m.LastName, m.FirstName, m.Phone

FROM Member m

PhoneList now becomes a “virtual” table, and we can use it like one of our real tables 

in other queries. We just need to remember that the virtual table is created on the fly by 

running the query on the permanent Member table and is then gone. To get our phone list 

now, we can use the SQL statement in Listing 2-14.

Listing 2-14. Using a View in a Query

SELECT * FROM PhoneList

Specifying Conditions for Selecting Rows
In the queries we looked at in the previous sections, we used very simple conditions or 

criteria for determining whether to include a row in the result of a query. We looked at the 
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value in just one field, such as MemberType = 'Junior'. In the following section, we will 

look more closely at the different ways you can specify quite complicated conditions.

Comparison Operators

A condition is a statement or expression that is either true or false, such as MemberType = 

'Junior'. These types of expressions are called Boolean expressions after the 19th-century 

English mathematician George Boole who investigated their properties. The conditions 

we use to select rows from a table usually involve comparing the values of an attribute to 

some constant value. For example, we can ask whether the value of an attribute is the same, 

different, or greater than some value. Table 2-1 shows some comparison operators we can 

use in our queries.

Just a quick note of caution. In Table 2-1, some of our examples compare numbers, and 

some compare text. When we compare text attributes, the comparison is alphabetical. “A” 

comes before “Z”, so “A” < “Z”. Similarly, “Ann” comes before “Azaria” alphabetically, so 

“Ann” < “Azaria,” and so on. Recall from Chapter 1 that when we create a table, we specify 

the type of each field; for example, MemberID was an INT (integer or whole number), and 

LastName was CHAR(20) (a 20-character field). With numeric fields like INT, comparisons are 

numerical. With text or character fields, comparisons are alphabetical, and with date and 

time fields, comparisons are chronological. If we put numbers in a character field, they 

will sort alphabetically. This means you have things like “40” < “5” (because the first char-

acter, “4”, in the left text is less than the first character, “5”, on the right side2). So, make 

sure if a field in your table is going to contain numbers that you make it a numeric type, or 

you might get some rather surprising results from your queries.

Table 2-1. Comparison Operators

Operator Meaning Examples of True Statement

= Equals 5=5, 'Junior' = 'Junior'

< Less than 4<5, 'Ann' < 'Zebedee'

<= Less than or equal 4<=5, 5<=5

> Greater than 5>4, 'Zebedee' > 'Ann'

>= Greater than or equal 5>=4, 5>=5

<> Not equal 5<>4, 'Junior' <> 'Senior'

2. The comparison for text is generally done by comparing the Unicode values of each character in turn. 
The character “4” has a value of 52, and “5” has a value of 53.
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With these comparison operators, we can create many different queries. Often we will 

compare a value of an attribute (say MemberType) to a literal value (say “Junior”). Table 2-2 

shows some examples of Boolean expressions that we can use as conditions in the WHERE 

clause of an SQL statement for selecting rows from the Member table.

Some implementations of SQL are case sensitive when comparing text, and others are 

not. Being case sensitive means that, in comparisons, the different cases of the letters will 

make a difference; in other words, “Junior” is different from “junior”, which is different 

from “JUNIOR”. I usually check out any new database system I use to see what it does. If 

you do not care about the case of the attribute you are considering (that is, you are happy 

to retrieve rows where MemberType is “Junior” or “jUnIoR” or whatever), you can use the 

SQL function UPPER as in Listing 2-15. This will turn the value of each text attribute into 

uppercase before you do the comparison so that you know what is happening.

Listing 2-15. Selecting Rows Where the Case of a Text Value Is Not Important

SELECT *

FROM Member m

WHERE UPPER(m.MemberType) = 'JUNIOR'

Logical Operators

We can also combine Boolean expressions to create more interesting conditions. For 

example, we can specify that two expressions must both be true before we retrieve a 

particular row.

Let’s assume we want to find all the junior girls. This requires two conditions to be true: 

they must be female, and they must be juniors. We can easily express each of these condi-

tions independently. After that, we can use the logical operator AND, as in Listing 2-16, to 

say that both conditions must be true.

Table 2-2. Examples of Boolean Expressions on the Member Table

Expression Retrieved Rows

MemberType = 'Junior' All junior members

Handicap <= 12 All members with a handicap of 12 or less

JoinDate < '01/01/2000' Everyone who has been a member since before the beginning 
of 2000

Gender = 'F' All the women
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Listing 2-16. Finding All the Junior Girls

SELECT *

FROM Member m

WHERE m.MemberType = 'Junior' AND m.Gender = 'F'

Here we will look at three logical operators: AND, OR, and NOT. We have already seen 

how AND works. If we use OR between two expressions, then we require only one of the 

expressions to be true (but if they are both true, that is OK as well). NOT is used before an 

expression. For example, for our Member table, we might ask for rows obeying the condition NOT 

(MemberType = 'Social'). This means check each row, and if the value of MemberType is 

“Social”, then we don’t want that row. Table 2-3 gives some examples for the Member table. 

In the diagrams, each circle represents a set of rows (that is, those for social members or 

those for members with handicaps under 12). The shaded area represents the result of 

the operation.

Table 2-3. Examples of Logical Operators

Expression Description of Retrieved Data Diagram of Retrieved Data

MemberType = 'Senior' AND 
Handicap < 12

Seniors with a handicap under 12

MemberType = 'Senior' OR 
Handicap < 12

All the senior members as well as 
anyone else with a good handicap 
(those less than 12)

NOT MemberType = 'Social' All the members except the 
social ones (for the current 
data, that would be just the 
seniors and juniors)

Senior <12

Senior <12

Social
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The little truth tables in Figure 2-4 can be helpful in understanding and remembering 

how the Boolean operators work. You read them like this: In Figures 2-4a and 2-4b, we 

have two expressions, one along the top and one down the left. Each expression can have 

one of two values: True (T) or False (F). If we combine them with the Boolean expression 

AND, then Figure 2-4a shows that the overall statement is True only if both the contrib-

uting statements are True (the square in the top left). If we combine them with an OR 

statement, then the overall statement is False only if both contributing statements are 

False (bottom right of Figure 2-4b). The table in Figure 2-4c says that if our original state-

ment is True and we put NOT in front, then the result is False (left column), and vice versa.

Figure 2-4. Truth tables for logical operators (T = True, F = False)

Sometimes it can be a bit tricky turning natural-language descriptions into Boolean 

expressions. If you were asked for a list that included all the woman and all the juniors

(don’t ask why!), you might translate this literally and write the condition MemberType = 

'Junior' AND Gender = 'F'. However, the AND means both conditions must be true, so 

this would give us junior women. What our natural-language statement really means is 

“I want the row for any member if they are either a woman OR they are a junior (or both).” 

Be careful.

Dealing with Nulls
The example data in the Member table shown earlier in Figure 2-2 is all very accurate and 

complete. Every row has a value for each attribute except for Handicap, which doesn’t apply 

to some members. Real data is usually not so clean. Let’s consider some different data, as 

in Figure 2-5.
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Figure 2-5. Table with missing data

When there is no value in a cell in a table, it is said to be Null. Nulls can cause a few 

headaches in a database. For example, if we ran two queries, one to produce a list of male 

members and the other a list of females, we might assume that all the members of the club 

would appear on one list or the other. However, for the data in Figure 2-5, we would miss 

Kim Jones. Now, you could argue that the data shouldn’t be like that—but we are talking 

about real people and real clubs with less than accurate and complete data. Maybe Kim 

forgot (or refused) to fill in the gender part of the application form. It is possible to insist 

that Nulls are not allowed in a field when we create a table. Listing 2-17 shows how we 

could make Gender a field that always requires a value.

Listing 2-17. SQL for Creating a Table with a Required Field

CREATE TABLE Member (

MemberID INT PRIMARY KEY,

...

Gender CHAR(1) NOT NULL,

...)

It is worth bearing in mind, however, that making fields required can create more head-

aches than it cures. If Kim Jones did not fill all the boxes on his/her membership application 

but sent a bank draft for the subscription, then we want to make him/her a member and 

worry about the full details later. However, if we make Gender a required field, then we 

can’t enter a record for him/her in the table—or we have to guess what his/her gender is. 

Neither of these options is very good, so it is best to be sparing about making fields required. 

Remember that our primary key fields (by definition) always need a value.

Not all values of Null mean there is a problem with the data. In our Member table, a field 

might be Null because it does not apply to a particular member. Sarah Beck’s handicap 

may be genuinely Null because she does not have a handicap. However, it is fair to assume 

that every member should have a value for MemberType and Gender, so the Nulls in these 

columns are because we do not know the value. In the real world, therefore, expect that 

your tables will have missing data.
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Comparing Null Values

Given that we are going to have unexpected Nulls in our tables, it is important to know 

how to deal with them. What rows will match the two conditions in Listing 2-18?

Listing 2-18. What Rows Will Match Each of These Conditions

Gender = 'F'

NOT (Gender = 'F')

If we run two queries with the conditions in Listing 2-18, will we get all the rows in the 

table? You might think that if we get all the rows that match a condition and all the ones 

that don’t, then we will get the lot. But in fact we don’t. Kim will not be included with the 

first condition because clearly the value of Gender does not equal “F”, But when we ask 

whether the value is NOT (“F”), we can’t say because we don’t know what the value is. It 

might be “F” if it had a value.  This probably makes more sense if we think about handicaps. 

If we ask for everyone with Handicap > 12, NOT (Handicap > 12), or Handicap <=12, then 

Sarah’s row will never be retrieved because the question doesn’t apply to her—she doesn’t 

have a handicap.

So once we take Nulls into consideration, our expressions for conditions might actually 

have one of three values: True, False, or “don’t know.” That is pretty much how the world 

actually works if you think about it. Only rows that are True for a condition are retrieved 

in a query. If the condition is False or if we “don’t know,” then the row is not retrieved.

The truth tables, when we include “don’t know,” look like those in Figure 2-6. For an 

AND operation, if one expression is False, then it doesn’t matter about the others—the 

result will be False. For an OR operation, if one expression is True, then it doesn’t matter 

about the others, so the result will be True.

Figure 2-6. Truth tables with three valued logic ( T = True, F= False, ? = Don’t know)
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Finding Nulls

Given that in our tables we may have Nulls that might cause us problems, it is useful to be 

able to find them. After we have entered a lot of new members into our database, we should 

check for problems. We might want to get a list of all the members who don’t have a value 

for MemberType, say. The SQL phrase to do this is IS NULL, as in Listing 2-19.

Listing 2-19. Finding the Members with No Value for MemberType

SELECT *

FROM Member m

WHERE m.MemberType IS NULL

Alternatively, we might want to retrieve just those members who do have a value in a cell. 

If we wanted the names and handicaps of those members who have a value for Handicap,

we could use the NOT operator to write a query like that in Listing 2-20.

Listing 2-20. Retrieving Information About Members Who Have a Handicap

SELECT *

FROM Member m

WHERE NOT (m.Handicap IS NULL)

Managing Duplicates
Let’s get a little more formal for a moment. In Chapter 1, I explained that relational theory 

is based on mathematics and one of its main premises is that we are working with relations. A 

relation is a set of distinct rows. The fact that all the rows are different is important. Not 

only would it make no sense to have two identical rows about one of our members, but it 

would also get us into all sorts of trouble. I’ve been using the term table rather than relation

but on the understanding that all our tables have a primary key, which ensures they meet 

the requirement that the rows are unique. When we use a project operation to retrieve a 

subset of columns, we may no longer have that primary key field in the result. Relational 

algebra depends on the result of each operation being another relation, and this is why it 

is possible to build up a series of operations to create quite complex queries. What do we 

do about possible duplicates? Let’s look at an example.

Consider the relational project operation to retrieve just the FirstName column from 

the Member table. Figure 2-7 shows two possible results.
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Figure 2-7. Projecting the FirstName column from the Member table

From a mathematical perspective, there is no question that in terms of the relational 

algebra the project operation will give us Figure 2-7b, a set of unique rows with the dupli-

cates for William and Thomas removed. What would you have expected? It is useful to think 

about why we might carry out a query retrieving just names. Perhaps the query is to help 

prepare a set of nametags for a club party. If that is the case, then two Thomases and a 

William are going to feel a bit left out if we use the unique output.

For the previous example you might think, what’s all the fuss? Of course we want to 

keep all the rows. But let’s look at a different project operation to retrieve a list of member-

ship types. Figure 2-8 shows the outputs with duplicates included and removed.

It’s pretty difficult to think of a situation where you want the duplicated rows in Figure 2-8a. 

The two project operations we have considered sound similar in natural language. “Give 

me a list of first names” and “Give me a list of membership types” sound like the same sort 

of question, but they mean something quite different. The first means “Give me a name 

for each member,” and the other means “Give me a list of unique membership types.”

a) With duplicates b) Without duplicates
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Figure 2-8. Projecting the MemberType column from the Member table

What does SQL do? If we say SELECT MemberType FROM Member, we will get the output in 

Figure 2-8a with all the duplicates included. If we do not want the duplicates, then we can 

use the keyword DISTINCT, as in Listing 2-21.

Listing 2-21. Retrieving a List of Unique Membership Types

SELECT DISTINCT m.MemberType

FROM Member m

Whether you keep the duplicates depends very much on the information you require, so 

you need to give it some careful thought. If you were expecting the set of rows in Figure 2-8b 

and got Figure 2-8a, you would most likely notice. With the two sets of rows in Figure 2-7, 

it is much more difficult to spot that you have perhaps made a mistake. Get into the habit 

of thinking about duplicates for all your queries.

a) With duplicates b) Without duplicates
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Ordering Output
Every now and then I refer to a “set of rows” rather than a table or a virtual table. Our formal 

definition of a database is a “set of tables,” and for a table the definition is a “set of rows.”3

The word set has two implications. One is that there are no duplicates (and we have discussed 

that a lot!). The other implication is that there is no particular order to the rows in our set. 

In theory, we don’t have a first row or a last row or a next row. If we run a query to retrieve 

all the rows, or just some of the rows, from a table, then we have no guarantee in what 

order they will be returned. However, sometimes we might like to display the result in a 

particular order. We can do this with the key phrase ORDER BY. Listing 2-22 shows how to 

retrieve member information ordered alphabetically by LastName.

Listing 2-22. Retrieving the Members in Order of LastName

SELECT *

FROM Member m

ORDER BY m.LastName

We can also order by two or more values. For example, if we want to order members 

with the same LastName by the value of their FirstName, we can include those two attributes 

(in that order) in the ORDER BY clause. The ORDER BY clause is the final clause in an SQL 

query. Listing 2-23 shows how to list all the senior members ordered by LastName and 

where the last names are the same by FirstName.

Listing 2-23. Retrieving the Senior Members Ordered by LastName and Then FirstName

SELECT *

FROM Member m

WHERE m.MemberType = 'Senior'

ORDER BY m.LastName, m.FirstName

The type of a field determines how the values will be ordered. Text fields will be ordered 

alphabetically, number fields will be ordered numerically, and date and time fields will be 

ordered chronologically.

Performing Simple Counts
As well as retrieving a subset of rows and columns from a table, we can also use SQL queries 

to retrieve some statistics. There are SQL functions that allow us to count records, total or 

average values, find maximum and minimum values, and so on. In this section, we will 

look at some simple queries for counting records. (We will return to this topic in Chapter 8.)

3. To be really formal, a database is actually a “set of relations,” and a relation is a “set of tuples.”
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Listing 2-24 shows a simple query to return the number of records in the Member table. 

COUNT is a function in SQL, and * means count each record.

Listing 2-24. Retrieving the Number of Records in a Table

SELECT COUNT(*) FROM Member

We can also count a subset of rows by adding a WHERE clause to specify those rows we 

want to include. Listing 2-25 shows how to count the number of senior members.

Listing 2-25. Retrieving the Number of Senior Members

SELECT COUNT(*) FROM Member m

WHERE m.MemberType = 'Senior'

Because we have just been talking about Nulls and duplicate values, it is worth briefly 

mentioning here how these will affect our counts. Rather than use * as a parameter to the 

COUNT function so that it counts all the rows, we can put an attribute such as Handicap in 

parentheses, as shown in Listing 2-26. This will count the number of records that have a 

value for the Handicap attribute.

Listing 2-26. Retrieving the Number of Records with a Non-Null Value for Handicap

SELECT COUNT(Handicap) FROM Member

We can also specify that we want to count the number of unique values for an attribute, 

that is, how many different handicaps there are. Listing 2-27 shows how to do this.

Listing 2-27. Retrieving the Number of Different Values for Handicap

SELECT COUNT(DISTINCT Handicap) FROM Member

It is worth reiterating that different database software will support different parts of the 

SQL standard syntax. For example, Microsoft Access does not support the statement in 

Listing 2-27. There is usually a way to work around this and find an equivalent query, and 

we will look at that and other issues related to aggregates and summaries in Chapter 8.

Avoiding Common Mistakes
The select and project operations for retrieving a subset of rows and columns from a single 

table are the simplest of the relational operations. However, you have seen that you still 

need to be careful. It is important to remember that there will be Null values in your tables 

and to think carefully about how your selection conditions will treat them. You also need 
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to remember that if you do not retrieve the primary key fields from your tables, there is the 

potential to have duplicate rows, and you must deal with them appropriately.

There are a couple of other mistakes that are commonly made with a select operation. 

They don’t become apparent with a table like Member, so I’ll introduce some more of the 

tables in our golf club database. Figure 2-9 shows part of the Member table and two other 

tables: Entry and Tournament. The first row in the Entry table records that person 118 

(Melissa McKenzie) entered tournament 24 (Leeston) in 2005.

Figure 2-9. Introducing the Tournament and Entry tables

We can try some of our select and project operations on the Entry table to answer ques-

tions such as which tournaments (just the ID number) has person 258 entered, who (just 

the ID number) has ever entered tournament 24, or who entered tournament 36 in 2006. 

Listing 2-28 shows the SQL for the last question. (Recall that e is just an alias referring to 

the Entry table.)

Listing 2-28. Who Entered Tournament 36 in 2006

SELECT e.MemberID

FROM Entry e

WHERE e.TourID = 36 AND e.Year = 2006

a) Member (some columns) b) Entry c) Tournament
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Misusing Select to Answer Questions with the Word “both”

The select operation to find subsets of rows can very simply give us the answer to many 

questions as in the previous section. However, there is a bit of a temptation to write similar 

queries such as that in Listing 2-29 to try to retrieve people who have entered both tourna-

ments 36 and 38.

Listing 2-29. Incorrect SQL to Retrieve People Who Have Entered Both Tournaments 36 and 38

SELECT e.MemberID

FROM Entry e

WHERE e.TourID = 36 AND e.TourID= 38

Can you work out what this query will return? This is where thinking of our row variable 

(finger) e investigating each row in table Entry can help. We can see part of the Entry table 

in Figure 2-10.

Figure 2-10. The row variable e investigates each row independently.

Imagine our finger is pointing at the row shown in the diagram. Does this row (415, 38, 

2004) satisfy the condition e.TourID = 36 AND e.TourID= 38? It satisfies the second part, 

but the AND operator requires the row to satisfy both conditions. No single row in our 

table will have both 36 and 38 in the tournament column because each row is for just one 

entry. The SQL in Listing 2-29 will never find any rows; it will always return an empty table. If 

we change the Boolean operator to OR, we will get the row indicated in Figure 2-10 returned; 

however, we will also then get anyone who has entered 36 or 38 but not necessarily both.

This particular query cannot be solved with a simple select operation. By definition, 

the condition in a select applies to each row independently. To answer the question about 

who has entered both competitions, we need to look at more than one row of the Entry

table at the same time (that is, two fingers). If we have two fingers, one pointing at the row 

shown in Figure 2-10 and another pointing at the previous row, then we can deduce that 

415 has been in both tournaments. We’ll look at how to do this in Chapter 5.

e



CH A PT E R  2  ■  S IM P L E  QU E R IE S  O N  O N E  T AB LE 39

Misusing Select Operations to Answer Questions with the 
Word “not”

Now let’s consider another common error. It is easy to find the people who have entered 

tournament 36 with the condition e.TourID = 36. It is tempting to try to retrieve the people 

who have not entered tournament 36 by changing the condition slightly, as in Listing 2-30.

Listing 2-30. Incorrect SQL to Retrieve People Who Have Not Entered Tournament 36

SELECT e.MemberID

FROM Entry e

WHERE e.TourID <> 36

Can you figure out what rows the SQL query in Listing 2-28 will retrieve? What about 

the row that the finger is pointing to in Figure 2-10? Does this satisfy e.TourID <> 36? It 

certainly does. But this doesn’t mean 415 hasn’t entered tournament 36 (the previous row 

says he did). The query in Listing 2-28 returns all the people who have entered some tour-

nament that isn’t 36 (which is unlikely to be a question you’ll ever want to ask!).

This is another type of question that can’t be answered with a simple select operation 

that looks at independent rows in a table. In fact, we can’t even do this with a query that 

involves just the Entry table. Member 138 Michael Stone has not entered tournament 36, 

but he doesn’t even get a mention in the Entry table because he has never entered any 

tournaments at all. We’ll see how to deal with questions like this in Chapter 7.

Summary
In this chapter, we looked at the relational algebra operations select and project on a single 

table, the equivalent relational calculus expressions, and the equivalent SQL statements.

The select operation returns a subset of rows that satisfy a given condition. The condition 

is a Boolean expression, which is a statement that is either true or not true. The expres-

sion usually compares the values in fields and—with the use of the Boolean operators 

AND, OR, and NOT—can be very descriptive. The condition is applied to each row of the 

table independently.

The project operation returns a subset of columns. Table 2-4 summarizes the SQL for 

the select and project operations.

Table 2-4. SQL for Select and Project Operations

SQL for Select SQL for Project

SELECT *
FROM  <table>
WHERE  <condition>

SELECT <column 1>, <column 2> , ...
FROM <table>
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Because relational operations always result in another table (really a relation), we can 

do several operations in succession. We can follow a select by a project to get a subset of 

both rows and columns.

Because the result of a query is a set of rows, we cannot guarantee the order in which 

the rows will be returned. If we want to display the result in a particular order, we can use 

the ORDER BY key phrase.

It is possible to create a view, which essentially stores an SQL command so that you can 

run it over and over again as the data in the base tables changes.

The following are some other key points to remember from this chapter:

• Tables are likely to have Null values (both on purpose and by mistake). Always check 

how your conditions will apply to Null values.

• When you project a subset of columns using an SQL command, the default is to retain 

duplicate rows in the result. Always think about whether you want the duplicates, 

and use the keyword DISTINCT if you want unique rows.

• The select operation considers only one row at a time. Don’t use it for queries that 

require you to look at several rows at once, as in who entered both tournaments or 

who did not enter this tournament.
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A First Look at Joins

In the previous chapter, we looked at how to retrieve subsets of rows and/or columns 

from a single table. We saw in Chapter 1 that to keep data accurately in a database, different 

aspects of our information need to be separated into normalized tables. Most of our queries 

will require information from two or more tables. You can combine data from two tables 

in several different ways depending on the nature of the information you are trying to 

extract. The most often encountered two-table operation is the join.

Joins in Relational Algebra
The join is one of the relational algebra operations, so we will first look at the definition in 

terms of the algebra. The algebra tells us how to get the result we are looking for, and a join 

has two steps. The first step involves an operation called a Cartesian product.

Cartesian Product

A Cartesian product is the most versatile operation between two tables because it can be 

applied to any two tables of any shape. Having said that, it rarely produces particularly 

useful information on its own, so its main claim to fame is as the first step of a join.

A Cartesian product is a bit like putting two tables side by side. Let’s have a look at two 

tables in Figure 3-1: an abbreviated Member table and the Type table.

The virtual table resulting from the Cartesian product will have a column for each 

column in the two contributing tables. The rows in the resulting table consist of every 

combination of rows from the original tables. Figure 3-2 shows the first few rows of the 

Cartesian product.
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Figure 3-1. Two permanent tables in our database

Figure 3-2. First few rows of the Cartesian product between Member and Type

We have the four columns from the Member table and the two columns from the Type

table, which gives us six columns total. Each row from the Member table appears in the 

resulting table alongside each row from the Type table. We have Melissa McKenzie appearing 

on three rows—once with each of the three rows in the Type table (junior, senior, social). 

The total number of rows will be the number of rows in each table multiplied together; in 

other words, for this cut-down Member table, we have 9 rows times 3 rows (from Type), giving a 

total of 27 rows. Cartesian products can produce very, very large result tables, which is why 

they don’t give us much useful information on their own. Listing 3-1 shows the relational 

algebra expression for the Cartesian product resulting in the table in Figure 3-2. The 

symbol X represents the Cartesian product operation.

From Member table From Type table
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Listing 3-1. Cartesian Product Between Two Tables

Member X Type

Inner Join

If you look at the table in Figure 3-2, you can see that most of the rows are quite meaningless. 

For example, the second and third rows that have our junior member Melissa McKenzie 

alongside information about the senior and social membership types are pointless. However, 

the first row where the member types from each table match is useful because it allows 

us to see what fee Melissa pays. If we take just the subset of rows where the value in the 

MemberType column matches the value in the Type column, then we have useful informa-

tion about the fees for each of our members. This combination of a Cartesian product 

followed by a select operation is known as an inner join (often just called a join). The 

condition for the rows we want to retrieve is known as the join condition. Listing 3-2 

shows the algebra expression to retrieve members with their appropriate fees. On the left 

side of the equation, the bow tie symbol represents the join between the two tables Member

and Type, and the join condition is expressed in the subscript. On the right side of the equa-

tion, we perform a select operation on the result of the Cartesian product.

Listing 3-2. A Join (Left Side) Is Defined As a Cartesian Product Followed by a Select

Figure 3-3 depicts the process. 

Figure 3-3. A join is a Cartesian product followed by a select.

The two columns that we are comparing for equality (MemberType and Type) must be 

what is sometimes referred to as join compatible. In the pure relational theory, this means 

Member MemberType=TypeType MemberType=Type(Member X Type)

Select just those rows where these
two columns have the same value

a) Cartesian product b) Joinselect
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they must both come from the same set of possible values (formally known as a domain). 

In practical terms, join compatibility usually means that the columns in each of the tables 

have the same data type. For example, they are both integers or both dates. Different data-

base products may interpret join compatibility differently. Some might let you join on a 

float (number with a decimal point) in one table and an integer in another. Some may be 

fussy about whether text fields are the same length (such as CHAR(10) or CHAR(15)), and 

others may not. I recommend you don’t try to join on fields with different types unless you 

are very clear what your particular product does. As always, the best thing is to make sure 

that when you design your tables, those fields that are likely to be joined have the same types.

SQL for Cartesian Product and Join

As I pointed out in the previous section, not all versions of SQL are the same. In 1992 keywords 

representing some algebra operations were added to the SQL standard,1 and there have 

been a number of updates since then. However, not all vendors incorporate all parts of the 

standard, and some add extras. You might find that some SQL versions may not imple-

ment all the algebra-related keywords that we use in this book, but there are usually a 

number of ways to retrieve the information required. You can express all the relational 

algebra operations using relational calculus expressions, and they will always work for 

you. In the meantime, let’s look at the SQL statements that reflect the algebra operations. 

We’ll look at other equivalent calculus statements later in this chapter.

The SQL key phrase for a Cartesian product is CROSS JOIN. It is not often that you have 

a question that requires a CROSS JOIN, but for completeness Listing 3-3 shows it being 

used to retrieve the table shown in Figure 3-3a. As in all our other SQL queries, SELECT * 

just means retrieve all the columns. 

Listing 3-3. SQL for a Cartesian Product to Produce Table in Figure 3-3a

SELECT *

FROM Member m CROSS JOIN Type t

The SQL phrase for a join is INNER JOIN. The join condition (which in this case allows 

us to select those rows where the member type is the same in both tables) follows the 

keyword ON, as shown in Listing 3-4. 

Listing 3-4. SQL for a Join to Produce Table in Figure 3-3b

SELECT *

FROM Member m INNER JOIN Type t ON m.MemberType = t.Type

1. International Organization for Standardization. Information technology — Database languages — SQL.
ISO, Geneva, Switzerland, 1992. ISO/IEC 9075:1992.
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Joins in Relational Calculus
Now let’s take a look at joins from a calculus perspective. Remember, calculus expressions 

tell us what we would like the resultant table to look like as opposed to how we get it. 

Let’s start with the Cartesian product: we want a set of rows made up of combinations 

of rows from each of the contributing tables. Figure 3-4 shows how we can envisage this. 

We are looking at two tables, so we need two fingers to keep track of the rows. Finger m 

looks at each row of the Member table in turn. Currently it is pointing at row 3. For each row 

in the Member table, finger t will point to each row in the Type table.

Figure 3-4. Row variables m and t point to each row of their respective tables.

Listing 3-5 shows the relational calculus expression. 

Listing 3-5. Relational Calculus for Cartesian Product

{m, t | Member(m), Type(t)}

Listing 3-6 shows the SQL that is very similar to this relational calculus expression.

Listing 3-6. Alternative SQL for a Cartesian Product to Produce Table in Figure 3-3a

SELECT *

FROM Member m , Type t 

The SQL statement in Listing 3-6 is equivalent to the one in Listing 3-3 that used the 

CROSS JOIN keyword. They will both return the same set of rows. Which you use doesn’t 

matter—in fact, in some products when you type Listing 3-6, it will automatically replace 

it with Listing 3-3. Other products do not implement the key phrase CROSS JOIN, so you 

have to use the alternative statement.

Member table Type table

m
t
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Now let’s consider the join. As the two fingers traverse the two tables, they cover every 

combination of rows. For the join we have the extra condition that we want to retrieve 

rows only where the membership type from each table is the same. The pair of rows depicted 

in Figure 3-4 satisfies that condition and so will be retrieved. If m stays where it is and t 

moves, then the condition will no longer be satisfied. We can express this in calculus nota-

tion as in Listing 3-7 where we have just added the extra condition to the right side. 

Listing 3-7. Relational Calculus for Join

{m, t | Member(m), Type(t) and m.MemberType = t.Type}

We can translate the calculus expression directly into an SQL statement as in Listing 3-8. 

The extra condition is represented by a WHERE clause.

Listing 3-8. Alternative SQL for a Join to Produce the Table in Figure 3-3b

SELECT *

FROM Member m , Type t 

WHERE m.MemberType = t.Type

The SQL statement in Listing 3-8 is based on relational calculus in that it says what the 

rows to be retrieved are like. We want combinations of rows from Member and Type where 

the membership types are the same. The statement is equivalent to the statement in 

Listing 3-4, which uses the INNER JOIN key phrase. Once again, which one you use does 

not matter—it just depends how you find yourself thinking about the query. Sometimes 

there is a possibility that the way you express the query may affect the performance, and 

we will talk about this more in Chapter 9. Actually, most database products are pretty 

smart at optimizing or finding the quickest way to perform a query regardless of how you 

express it. For example, in SQL Server, the queries in Listings 3-4 and 3-8 are carried out 

in the same way. In fact, in SQL Server, if you type the code in Listing 3-8 into the default 

interface, that code will be replaced by Listing 3-6. 

Even though the expression in Listing 3-8 is not based directly on the algebra, we can 

see how the algebra is reflected. The second line is the Cartesian product, and the last line 

is a select—and there we have our algebra definition of a join.

Extending Join Queries
Now that we have added joins to our arsenal of relational operations, we can perform 

numerous types of queries. Because the result of a join (as with any operation) is another 

table, we can then join that result to a third table (and then another) and then apply select 

and project operations to the result as required. Let’s look at an example using the tables 

in Figure 3-5. The Member and Tournament tables provide details of members and tourna-

ments (not surprisingly!), and the Entry table has information about which members have 
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entered the different tournaments. In the Entry table, we have the ID numbers of members 

and tournaments as foreign keys, and if we want any additional information (say the name of 

a member or type of tournament), we need to find this from the Member and Tournament

table, respectively. Say we want to find the names of everyone who entered an Open tour-

nament in 2006.

Figure 3-5. Permanent tables in the club database

We can approach the question “What are the names of people who entered an Open 

tournament in 2006?” in many different ways. I’ll describe an algebra and a calculus 

approach, and you will probably find that one appeals to you more than the other.

An Algebra Approach

We are starting with three tables, so we need some relational operation that combines 

data from more than one table. Let’s start with Member and Entry.

The first row in the Entry table is for the member with ID 118, and to find his or her 

name, we need the corresponding row in the Member table, that is, one where the member 

IDs match. A join between these two tables as in Listing 3-9 will give us that information 

for all entries.

a) Member (some columns) b) Entry c) Tournament
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Listing 3-9. Join the Member and Entry Tables

This join will result in the table in Figure 3-6.

Figure 3-6. Joining the Member and Entry tables

Now we can see the names of the members along with their entry. To find the addi-

tional information about each tournament, we need to take the result of the join between 

Member and Entry and join that to the Tournament table. The algebra is in Listing 3-10, and 

the resulting table in Figure 3-7. It doesn’t matter which of the joins we specify as being 

done first because the result will be the same. 

Member MemberID=MemberIDEntry

Join condition requires values in these two columns to be the same

From Member table (m) From Entry table (e)
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Listing 3-10. Join the Tournament Table to the Result of Joining the Member and Entry Tables

Figure 3-7. Join the Tournament table to the result of joining the Member and Entry table. 

The table in Figure 3-7 now has all the information we need to answer our question 

about who entered Open tournaments in 2006. It is going to be a useful table for us to be 

able to re-create from time to time, so we might want to create a view as described in the 

previous chapter. Listing 3-11 shows the SQL to make a view that we can reuse. Although 

the SQL statement looks quite long, it is easy to understand if you start with the individual 

bits. I’ve split the query into different lines to make it easier to read. On the third line you 

can see the join between Member and Entry in brackets and then on the fourth line the result 

joined to the Tournament table. (I haven’t repeated the duplicated MemberID and TourID

columns in the view in Listing 3-11.)

(Member MemberID=MemberIDEntry)    TourID=TourIDTournament

Member joined with Entry Tournament

Join condition requires values in these two columns to be the same
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Listing 3-11. SQL to Create a View to Join Three Tables

CREATE VIEW AllTourInfo AS

SELECT m.MemberID, m.LastName, m.FirstName, e.TourID, e.Year, t.TourName, t.TourType

FROM ( Member m INNER JOIN Entry e ON m.MemberID = e.MemberID )

            INNER JOIN Tournament t ON e.TourID = t.TourID

Although the table in Figure 3-7 and the corresponding view in Listing 3-11 are both 

useful, they contain more information than our original question required. We can take 

the result of our view and use select and project operations to retrieve a subset of rows and 

columns as we did in Chapter 2. We are interested in only some of the rows—so we need 

a select operation with the condition TourType = 'Open' AND Year = 2006. Then we want 

to see only the names, that is, a subset of the columns, so we can use a project operation 

to retrieve those. Altogether, the algebra looks like the expression in Listing 3-12 and can 

be implemented by the SQL expression in Listing 3-13.

Listing 3-12. Algebra to Retrieve Subset of Information from the View AllTourInfo

Listing 3-13. SQL to Retrieve Subset of Information from the View AllTourInfo

SELECT LastName, FirstName 

FROM  AllTourInfo

WHERE TourType = 'Open' AND Year = 2006

If we didn’t want to have the intermediate step of creating a view, we could combine all 

the operations into one SQL query as in Listing 3-14 where the name of the view has been 

replaced with the SQL SELECT statement, Listing 3-11, that we used to define it.

Listing 3-14. SQL to Retrieve Information from Original Tables

SELECT LastName, FirstName 

FROM ( Member m INNER JOIN Entry e ON m.MemberID = e.MemberID)

            INNER JOIN Tournament t ON e.TourID = t.TourID

WHERE TourType = 'Open' AND Year = 2006

Order of Algebra Operations

In our relational algebra description, we joined all the tables first and then selected the 

appropriate rows and columns. The result of the join is an intermediate table (as in 

Figure 3-7) that is potentially extremely large if there are lots of members and tourna-

ments. We could have done the algebra in a different order. We could have first selected 

just the Open tournaments from the Tournament table and the 2006 tournaments from the 

LastName, FirstName ( Year=2006 AND Type=‘Open’(AllTourInfo))
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Entry tables, as shown in Figure 3-8. Joining these two smaller tables with each other and 

then joining that result with Member would result in a much smaller intermediate table.

Figure 3-8. Selecting rows from the Entry and Tournament tables before joining them

So, should we worry about the order of the operations? The answer is “yes”—order of 

operation makes a huge difference—but if you are using SQL, then it is not your problem 

to worry about it. The SQL statement is always going to look like the one in Listing 3-14 

(but with the tables possibly in a different order). The SQL statement is sent to the engine 

of whatever database program you are using, and the query will be optimized. This means 

the database program figures out the best order to do things. Some products do this 

extremely well, and others not so well. Many products have analyzer tools that will let you 

see in what order things are being done. For many queries, writing your SQL differently 

doesn’t make much difference, but you can make things more efficient by providing indexes 

for your tables. We will look at these issues more carefully in Chapter 9.

A Calculus Approach

The reason that the way we write our SQL statements often doesn’t affect the efficiency of 

a query is that SQL is fundamentally based on relational calculus. The original SQL stan-

dards did not even have algebra keywords like INNER JOIN. SQL statements without these 

algebra keywords describe what the retrieved rows should be like, so they do not have 

anything to say about how. Let’s look at a calculus approach to our question “Who entered 

Open tournaments in 2006?”

We want to just retrieve some names from the Member table. Forget joins, and think how 

you would know whether a particular name should be retrieved if you were shown just the 

three tables and knew nothing about databases or foreign keys or anything. Imagine a 

finger m tracing down the table as in Figure 3-9.

Selecting 2006 entries Select Open tournaments
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Figure 3-9. Using row variables to describe the rows that satisfy the query conditions

Do we want to write out William Cooper, the name to which m is currently pointing? 

How would we know? Well, first we have to find a row with his ID (235) in the Entry table 

for the year 2006 such as the one where finger e is pointing (where TourID is 40). Then we 

have to find a row with that tournament ID (40) in the Tournament table and check whether 

it is an Open tournament. Looking at Figure 3-9, we see that the rows where the three 

fingers are pointing give us enough information to know that William Cooper did indeed 

enter an Open tournament in 2006. This set of conditions describes what a row in the 

result table should be like.

Now let’s write that last paragraph a bit more succinctly. Read the following sentence 

with reference to the rows denoted in Figure 3-9:

I’ll write out the names from row m, where m comes from the Member table, if there
exists a row (e) in the Entry table where m.MemberID is the same as e.MemberID and
e.Year is 2006 and there also exists a row (t) in the Tournament table where
e.TourID is the same as t.TourId and t.TourType has the value “Open”.

And now (if you prefer), Listing 3-15 shows the same sentence represented in calculus 

notation. The construction (e) means “There exists a row e,” and Entry(e) means “where 

e comes from the Entry table.”

a) Member (some columns) b) Entry c) Tournament

m e

t
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Listing 3-15. Relational Calculus Expression to Find Members Entered in 2006 

Open Tournaments

{m.LastName, m.FirstName | Member(m) and  (e) Entry(e) and  (t) Tournament(t) and 

m.MemberID = e.MemberID and e.TourID = t.TourID and t.TourType = ‘Open’ and e.Year = 2006}

The expression in Listing 3-16 describes what a particular row in our resulting table 

must look like. The SQL statement is very similar. Compare Listing 3-16 with the calculus 

expression and with Figure 3-9. The last three lines are all part of one big WHERE clause. 

I’ve indented them to make that easier to interpret.

Listing 3-16. SQL to Find Members Entered in 2006 Open Tournaments

SELECT m.LastName, m.FirstName

FROM Member m, Entry e, Tournament t

WHERE m.MemberID = e.MemberID

        AND e.TourID = t.TourID

        AND t.TourType = 'Open' AND e.Year = 2006

You can see how the SQL statement in Listing 3-16 is like the calculus in that it describes 

what a retrieved row should be like. If you look carefully at the statement, you can pick out 

all the algebra operations. The second line (FROM) is a big Cartesian product, the next 

two lines are the join conditions (which would give us a table like the one in Figure 3-7), 

the final line is our select operation, and the first line tells us what columns to project.

The two SQL statements in Listings 3-14 and 3-16 are equivalent. They will return the 

same set of rows: Listing 3-14 reflects the underlying algebra of how, and Listing 3-16 

reflects the underlying calculus of what.

You may be wondering why I’ve been bothering with the calculus expressions and their 

somewhat obscure symbols like , and so on. For the particular example in this section, 

the calculus and SQL statements are so similar that we don’t really need the intermediate 

step of writing the calculus statement. However, for more complicated queries, I find having a 

shorthand notation for describing a typical row very helpful. As you get more proficient, 

you will find that for many queries you can just write the SQL statement directly, but when 

you get stumped, the more approaches at your disposal, the more likely you will be able to 

find a solution.

Expressing Joins Through Diagrammatic Interfaces

This book is about queries in SQL, but most database products also provide a diagram-

matic interface to express queries. Just for completeness, I’ll show you what a typical 

diagrammatic interface looks like for retrieving the names of members who entered an 

Open tournament in 2006.
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Figure 3-10 shows the Microsoft Access interface, but most products have something 

very similar. The tables are represented by the rectangles in the top section with the lines 

showing the joins between them. The columns to be retrieved have a check mark ( ) in the 

row marked Show, and the select conditions are shown for the relevant fields in the row 

marked Criteria.

Figure 3-10. Access diagrammatic interface for the query to find names of members entering 

an Open tournament in 2006

Other Types of Joins 
The joins we have been looking at in this chapter are equi-joins. An equi-join is one where 

the join condition has an equals as in m.MemberID = e.MemberID. This is the most common 

type of condition, but you can have different operators. A join is just a Cartesian product 

followed by a select, and the select condition can consist of different comparison opera-

tors (for example, <> or > ) and also logical operators (for example, AND or NOT). These 

sorts of joins don’t turn up all that often. On the tables we have been looking at, I can’t for 

the life of me think of a sensible query that would need one.

The joins up to now have also been what are more accurately called inner joins. You 

will recall that the SQL key phrase (for example, in Listing 3-11) was INNER JOIN. There 

are also joins called outer joins. The best way to understand an outer join is to see where 

they are useful. Have a look at the (modified) Member and Type tables in Figure 3-11.

You might want to produce different lists from the Member table, such as numbers and 

names, names and membership types, and so on. In these lists you expect to see all the 

members (for the table in Figure 3-11, that would be nine rows). Then you might think 

that as well as seeing the numbers and names in your member list, you will also include 

the membership fee. You join the two tables (with the condition MemberType = Type) and 

find that you “lose” one of your members—Barbara Olson (Figure 3-12). 
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Figure 3-11. Member and Type tables

Figure 3-12. Inner join between Member and Type, and we “lose” Barbara Olson

The reason is that Barbara Olson has no value of MemberType in the Member table. Let’s 

look at the Cartesian product that is the first step for doing a join. Figure 3-13 shows those 

rows of the Cartesian product that include Barbara.

Figure 3-13. Part of the Cartesian product between the Member and Type tables

(modified) Member table Type table
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Having done the Cartesian product, we now need to do the final part of our join oper-

ation, which is to apply the condition (MemberType = Type). As you can see in Figure 3-13, 

there is no row for Barbara Olson that satisfies this condition because she has a Null or 

empty value in MemberType.

Consider the following two natural-language questions: “Get me the fees for members” 

and “Get me all member information including fees.” The first one has an implication of 

“Just get me the members that have fees,” while the second has more of a feel of “Get me 

all the members and include the fees for those that have them.” One of the biggest diffi-

culties about writing queries is actually trying to decide exactly what it is you want. It is 

even more difficult if you are trying to understand what someone else is asking for!

Let’s say that what we want is a list of all our members, and where we can find the fee 

information, we’d like to include that. In this case, we want to see Barbara Olson included 

in the result but with no fee displayed. That is what an outer join does. Outer joins can 

come in three types: left, right, and full outer joins. Look at Listing 3-17, which shows a left 

outer join (denoted by the equal sign to the left of the join symbol) between the Member

and Type tables. Figure 3-14 shows the rows retrieved.

Listing 3-17. Algebra Expression for Left Outer Join Between Member and Type Tables

Figure 3-14. Result of left outer join between Member and Type tables

What the left outer join does is retrieve all the rows from the left table, even those with 

a Null value in the join field. So, we see that as well as all the rows from the inner join 

(Figure 3-12), we also have a row from the Member table for Barbara who had a Null for the 

join field MemberType. The fields in that row that would have come from the table on the 

right (Type and Fee) have Null values.

Listing 3-18 shows the SQL for the outer join depicted in Figure 3-14. It is the same as 

for the ordinary join, but the key phrase INNER JOIN is replaced with LEFT OUTER JOIN. 

Member= MemberType=TypeType
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Listing 3-18. SQL Statement for an Outer Join

SELECT *

FROM Member m LEFT OUTER JOIN Type t ON m.MemberType = t.Type

You might quite reasonably say that we wouldn’t have needed an outer join if all the 

members had a value for the MemberType field (as they probably should). That may be true 

for this case—but remember my cautions in Chapter 2 about assuming that fields that 

should have data will have data. In many situations, the data in the join field may be quite 

legitimately empty. We will see in later chapters queries like “List all members and the 

names of their coaches—if they have one.” “Losing” rows because you have used an inner 

join when you should have used an outer join is a very common problem and sometimes 

quite hard to spot.

What about right and full outer joins? Left and right outer joins are the same and just 

depend on which order you put the tables in the join statement. Listing 3-19 will return the 

same information as Listing 3-18, although the columns may be presented in a different 

order. 

Listing 3-19. SQL Statement for an Outer Join

SELECT *

FROM Type t RIGHT OUTER JOIN Member m ON m.MemberType = t.Type

In Listing 3-19, any rows with a Null in the join field of the right table (Member) will be 

included. A full outer join will retain rows with a Null in the join field in either table. The 

SQL is the same as Listing 3-19 but with the key phrase FULL OUTER JOIN. Let’s assume 

that our Type table in Figure 3-11 has another row for an associate member type. The full 

outer join would result in the table in Figure 3-15.

Figure 3-15. Result of a full outer join between Member and Type tables
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We have our row for Barbara Olson padded with Null values for the missing columns 

from the Type table. We also have the first row, which shows us the information about the 

associate membership type even though there are no rows in the Member table with 

“Associate” as a member type. Here each missing value from the Member table is replaced 

with a Null.

Not all implementations of SQL necessarily have a full outer join implemented explic-

itly. Access 2007 doesn’t. However, there are always alternative ways in SQL to retrieve the 

information you want. In Chapter 7 I’ll show you how to get the equivalent of a full outer 

join by using a union operator between a left and right outer join (which is what I had to 

do to get the screen shot in Figure 3-15!). 

Summary
Joins are the most often used of the operations that involve combining two tables. The 

resulting table has a column for each column in the two contributing tables. A join condi-

tion tells us which combinations of rows from the two contributing tables we will retain. 

The most common condition is equality between a field in each table. In the example in 

this chapter, the value of MemberType in the Member table had to equal the value of Type in 

the Type table. 

There are a number of equivalent ways of expressing joins in SQL. Table 3-1 shows 

a couple.

Table 3-1. SQL for Simple Joins 

SQL Reflecting Algebra SQL Reflecting Calculus

SELECT *

FROM  <table1> INNER JOIN <table2>

ON  <condition>

SELECT *…

FROM <table1>, <table2>

WHERE <condition>
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If one (or both) of the tables has rows with a Null in the field involved in the join condi-

tion, then that row will not appear in the result of an inner join. If that row is required, you 

can use an outer join. A left outer join will include all rows in the left table, including those 

with a Null in the join field—the corresponding fields from the right table will contain 

Nulls. A right outer join is the same but includes all rows from the right table, and a full 

outer join includes all rows from both tables. 
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C H A P T E R  4

Nested Queries

In the previous chapters, we looked at the select and project operations, which retrieve a 

subset of rows and columns from a single table, and we also looked at Cartesian products 

and joins, which combine two tables on a common field. We saw that there are several 

different ways to write SQL statements to perform combinations of these operations.

As queries become more complicated, we might find that we can think of SQL expres-

sions for different parts of the query but we need a way to tie them all together. In this 

chapter, we will look at nested queries and two new SQL keywords, EXISTS and IN. We will 

see how to use nesting to perform some of the queries we have already done and also how 

this will open up some other possibilities.

IN Keyword
The IN keyword allows us to select rows from a table, where an attribute can have one of 

several values. For example, if we wanted to retrieve the member IDs from the rows in our 

Entry table for tournaments with ID 36, 38, or 40, we could do this with a Boolean OR 

operator, as in the SQL statement in Listing 4-1.

Listing 4-1. Using OR Operations

SELECT e.MemberID

FROM Entry e

WHERE e.TourID= 36 OR e.TourID= 38 OR e.TourID=  40
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Clearly, the sort of expression shown in Listing 4-1 will start to become unwieldy as the 

number of possible options grows. Using the IN keyword, we can construct a more compact 

statement, as in Listing 4-2, where the set of possible values are enclosed in parentheses 

and separated by commas. Each row of Entry is investigated, and if TourID is one of the 

values in the set, then the WHERE condition is true, and that row will be returned.

Listing 4-2. Using the IN Keyword

SELECT e.MemberID

FROM Entry e

WHERE e.TourID IN (36, 38, 40)

We can combine IN with the logical operator NOT, as shown in Listing 4-3. The query 

will return all the IDs of members who have entered any tournament that is not in the list. 

We will look more carefully at using NOT later in the chapter.

Listing 4-3. Using NOT IN Keyword

SELECT e.MemberID

FROM Entry e

WHERE e.TourID NOT IN (36, 38, 40)

Using IN with a Nested Query
The real usefulness of the IN keyword is that we can use another SQL statement to generate 

the values in the set. For example, the reason that someone may have been interested in 

the set of tournaments (36, 38, 40) might have been because they are the Open tourna-

ments. Thus, we might want to generate a list of Open tournaments and feed that list into 

the IN clause.

Let’s look at a specific example of a query feeding into IN. I’ve reproduced a few of the 

columns of the Member table along with the Entry and Tournament tables in Figure 4-1.

In Listings 4-1 and 4-2, the Open tournaments were explicitly stated in the query by listing 

each ID. If a new Open tournament is added to the Tournament table, then the query will need 

to be changed to include that tournament’s ID in the set. However, we can construct another 

query to retrieve the IDs of all the Open tournaments, as shown in Listing 4-4.

Listing 4-4. Finding the IDs of All Open Tournaments

SELECT t.TourID

FROM Tournament t

WHERE t.TourType = 'Open'
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Figure 4-1. Member, Entry, and Tournament tables

We can replace the list of explicit values (36, 38, 40) in Listing 4-2 with the SQL state-

ment (Listing 4-4) that will retrieve the current values for Open tournaments, as shown in 

Listing 4-5. I’ve indented the nested part of the query (sometimes called a subquery) so 

you can see it more clearly.

Listing 4-5. A Nested Query to Find All Entries in Open Tournaments

SELECT e.MemberID

FROM Entry e

WHERE e.TourID IN

      (SELECT t.TourID

      FROM Tournament t

      WHERE t.TourType = 'Open')

You can understand a nested query by reading it from the “inside out.” The inside 

SELECT statement retrieves the set of required tournament IDs from the Tournament table, 

and then the outside SELECT finds us all the entries from the Entry table for tournaments 

IN that set. To work correctly with the IN keyword, the nested part of the query must 

return a list of single values.

(Some columns) Member Entry Tournament
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Have another look at the tables in Figure 4-1. How else might we have retrieved entries 

for Open tournaments? We did this in the previous chapter using a join. We can join the 

two tables Entry and Tournament on their common fields TourID. Then select just those 

rows that are for Open tournaments and retrieve (or project) the MemberID column. The 

SQL statement is in Listing 4-6.

Listing 4-6. Using a Join to Find All Entries in Open Tournaments

SELECT e.MemberID

FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID

WHERE t.TourType = 'Open'

The SQL statements in Listings 4-5 and 4-6 retrieve the same information. As I’ve said 

a number of times, there are often several different ways to write a query in SQL. The more 

methods you are familiar with, the more likely you will be able to find a way to express a 

complicated query.

Being Careful with NOT and <>
As well as asking a question such as “What are the IDs of members who have entered an 

Open tournament?” it is just as likely that we might want to know “What are the IDs of 

members who have NOT entered an Open tournament?” They sound very similar, but 

once we start using negatives in our questions, we have to be very careful about what we 

really mean. In Chapter 7, we will investigate such questions using set operations, but to 

keep this chapter complete, I’ll talk about how negatives impact the use of nested queries 

in particular.

Listings 4-5 and 4-6 showed two SQL statements for retrieving member IDs for members 

who have entered an Open tournament. As a first attempt, novices will often amend these 

queries slightly by changing = to <> or by changing IN to NOT IN, as in Listing 4-7 and 

Listing 4-8.

Listing 4-7. Using NOT IN: What Does This Query Retrieve?

SELECT e.MemberID

FROM Entry e

WHERE e.TourID NOT IN

      (SELECT t.TourID

      FROM Tournament t

      WHERE t.TourType = 'Open')
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Listing 4-8. Using <>: What Does This Query Retrieve?

SELECT e.MemberID

FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID

WHERE t.TourType <>'Open'

Carefully think about which rows will be returned by these two queries. With just a 

cursory comparison of the statements in Listings 4-5 and 4-6 and those in Listings 4-7 and 

4-8, it is not uncommon for someone to think that if the first pair returns those members 

who have entered an Open tournament, then the second pair will return those who have 

not. But this is not the case.

The table in Figure 4-2 shows the result of the inner join between Entry and Tournament

in Listings 4-6 and 4-8. The bottom set of rows are all for Open tournaments, and these 

will be retrieved by Listing 4-6, which has the condition WHERE t.TourType = 'Open'. The 

top set of entries are all for tournaments other than Open and will be retrieved by Listing 

4-8, which has the condition WHERE t.TourType <> 'Open'.

Figure 4-2. Determining who has or has not entered Open tournaments

In Figure 4-2 the oval at the bottom represents the people who have entered Open 

tournaments (those in the bottom part of the table), and the top oval represents those 

who have entered other types of tournaments (the top part of the table). Some people 

(in the overlap) have entered both types. Check the numbers in the ovals with those in 

the table to see where they come from.



66 CH AP T E R  4  ■  N E S T E D QU E R IE S

It is situations like the one shown in Figure 4-2 that can be potentially confusing when 

we start looking at negatives. When we ask for “people who have not entered an Open 

tournament,” we have to make sure we distinguish the two cases shown in Figure 4-3.

Figure 4-3. It is important to be careful to distinguish the SQL for these two situations.

Figure 4-3a shows the set of people who have not entered an Open tournament. 

Figure 4-3b shows those members who have entered something other than an Open tour-

nament (but not excluding those who may have entered an Open tournament as well!).

Now look at Listings 4-7 and 4-8 again, and try to think which set of people we are 

retrieving.

Listing 4-8 is actually retrieving those members who have entered something other 

than an Open tournament (but not excluding those who may have entered an Open tour-

nament as well!). This is the set depicted in Figure 4-3b. The same members will be retrieved 

by the query in Listing 4-7, which uses NOT IN. It will retrieve all entries that are not for 

Open tournaments as opposed to all members who have not entered an Open tournament. 

It is a very common mistake to confuse these two different questions.
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To decide whether someone has entered an Open competition, we need to find just one

matching entry. To decide he has not entered an Open competition, we need to check all

the Open entries to make sure there is not one for him.

In terms of our joined tables in Figure 4-2, finding those people who have entered an 

Open tournament is a simple relational algebra select operation. Remember that for a 

select operation we look at each row independently and decide whether it should be included 

in the returned set of rows. However, to find people who have not entered an Open tour-

nament, we need to investigate every row in the table to ensure that there is not an entry 

for a particular member. This is a much more complex task than a simple select. We can 

see from the third row in Figure 4-2 that member 258 has entered a non-Open tourna-

ment, but we have to search further down the table to see that he has entered an Open 

tournament at a different time. In fact, we also need to consider the members who have 

never entered any tournaments at all. These members’ IDs will not appear in the Entry

table at all, so we also have to investigate another table, the Member table, to find the 

complete list.

The type of query described in the previous paragraph can be expressed in the rela-

tional algebra using one of the set operations that we will look at in Chapter 7. However, 

we can also use relational calculus to help us write the SQL statement for this type of 

query. To do that, we need first to introduce the EXISTS keyword.

EXISTS Keyword
Let’s recall some relational calculus from the previous chapter. Our questions about who 

did or did not enter Open tournaments can be conveniently represented with calculus 

expressions. This approach allows us to answer the questions involving negatives that we 

had trouble with in the previous section.

Let’s start with a simple question. For example: “What are the names of all members 

who have ever entered any tournament?” We can start by thinking in terms of which rows 

of the Member table would satisfy our question. Consider the following sentence and 

Figure 4-4 together:

I’ll write out the names from row m, where m comes from the Member table, if there
exists a row e in the Entry table where m.MemberID = e.MemberID.

Listing 4-9 shows the equivalent calculus expression.

Listing 4-9. Relational Calculus Expression to Retrieve Members Who Have Entered a 

Tournament

{m.LastName, m.FirstName | Member(m) and (e) Entry(e) and m.MemberID = e.MemberID}
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Figure 4-4. William Cooper has entered a tournament because a matching row exists in the 

Entry table.

We can translate this almost directly into SQL with the use of the keyword EXISTS. 

Have a look at the SQL statement in Listing 4-10.

Listing 4-10. SQL Statement to Retrieve Members Who Have Entered a Tournament

SELECT m.LastName, m.FirstName

FROM Member m

WHERE EXISTS

       (SELECT * FROM Entry e WHERE e.MemberID = m.MemberID)

This is another example of a nested query where we have two SQL SELECT statements, 

one nested inside the other. This one is a little different from the simpler example in 

Listing 4-5. The WHERE condition in the inner query refers to part of the row being 

considered in the outer query, that is, e.MemberID = m.MemberID. I find the easiest way to 

interpret Listing 4-10 is with reference to Figure 4-4. The inner query is looking for a row 

in the Entry table with the same value for MemberID as the row under consideration in the 

Member table. If such a row or several such rows EXIST, then we are in business.

a) Member (some columns) b) Entry

m

e
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For those of you who are thinking that this seems like a complicated way to get a simple 

result, you are right (partly). The query in Listing 4-10 retrieves the same members as an 

inner join (on MemberID) between Member and Entry.

However, what if we want those members who have NOT entered a tournament? This 

requires only a tiny change to our relational calculus and SQL expressions. Instead of 

looking for members where a matching row in Entry exists, we now want those where a 

matching row does NOT exist. Adding the word NOT to Listing 4-10 gives us what we require, 

as shown in Listing 4-11.

Listing 4-11. SQL Statement to Retrieve Members Who Have NOT Entered a Tournament

SELECT m.Lastname, m.FirstName

FROM Member m

WHERE NOT EXISTS

       (SELECT * FROM Entry e WHERE e.MemberID = m.MemberID)

The NOT EXISTS construction will look through every row in the Entry table checking 

whether there is a row matching the current row in the Member table. The names of the 

member will be retrieved only if no matching row is found.

Now we have enough ammunition to tackle the query about members who have not 

entered an Open tournament. As always, there are several ways we can express the SQL 

query, and one way appears in Listing 4-12. It is almost the same as Listing 4-11, but 

instead of looking for members with no matching records in the Entry table, we look for 

members who do not have a matching record in the bottom section of the table shown in 

Figure 4-2. That set of rows results from joining Entry and Tournament and selecting just 

the rows for Open tournaments.

Listing 4-12. SQL Statement to Retrieve Members Who Have NOT Entered an Open Tournament

SELECT m.Lastname, m.FirstName

FROM Member m

WHERE NOT EXISTS

       (SELECT * FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID

       WHERE e.MemberID = m.MemberID and t.TourType = 'Open')

We will return to queries like this one when we look at set operations in Chapter 7.

Different Types of Nesting
We saw different types of nested queries in the previous sections. It is useful to review 

some of the options here.
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The inner part of the nested query can return a single value, a set of values, or a set of 

rows. The inner and outer queries can be independent to some extent, or they can be 

correlated.

Inner Queries Returning a Single Value

Inner queries that return a single value are often useful in the situation of a simple select 

operation to retrieve a subset of rows. Let’s consider the handicaps of our members, as 

shown in Figure 4-5.

Figure 4-5. Part of the Member table showing names and handicaps

If we want to find those members with a handicap less than 16, then this can be done 

simply with the SQL in Listing 4-13.

Listing 4-13. SQL Statement to Retrieve Members with Handicaps Less Than 16

SELECT *

FROM Member m

WHERE m.Handicap < 16

What should we do if we want to find all the members with a handicap less than Barbara 

Olson’s? Listing 4-13 will do that for us but only if Barbara’s handicap of 16 doesn’t change. 

We can replace the single value 16 with the result of an inner query that returns Barbara’s 

handicap as in Listing 4-14. Now the query will work for whatever Barbara’s current 

handicap is.
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Listing 4-14. SQL Statement to Retrieve Members with Handicaps Less Than Barbara Olson’s

SELECT *

FROM Member m

WHERE Handicap <

      (SELECT Handicap

      FROM Member

      WHERE LastName = 'Olson' AND FirstName = 'Barbara')

If, in a situation like this, our inner query returns more than one value (for example, 

if there were more than one Barbara Olson in the club), then we would get an error when 

trying to run the query.

An inner query returning a single value is also useful if we want to compare values with 

an aggregate of some sort. For example, we might want to find all the members who have 

a handicap less than the average. In this case, we can use the inner query to find the average 

value, as in Listing 4-15.

Listing 4-15. SQL Statement to Retrieve Members with Handicaps Less Than the Average

SELECT *

FROM Member m

WHERE m.Handicap <

      (SELECT AVG(Handicap)

      FROM Member)

If you take it nice and slowly, you can gradually build up quite complicated queries. Say 

we want to see whether any junior members have a lower handicap than the average for 

seniors. The inner query has to return the average value handicap for a senior member, 

and then we want to select all juniors with a handicap less than that. Both the inner and 

outer queries have an extra select condition (the inner retrieves just seniors, and the outer 

retrieves just juniors). Listing 4-16 shows one way of doing this.

Listing 4-16. SQL Statement to Retrieve Juniors with Handicaps Less Than the Average Senior

SELECT *

FROM Member m

WHERE m.MemberType = 'Junior' AND Handicap <

     (SELECT AVG(Handicap)

     FROM Member

     WHERE MemberType = 'Senior')
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Inner Queries Returning a Set of Values

This is where we started this chapter. When we use the IN keyword, SQL will expect to find 

a set of single values. For example, we might ask for rows from the Entry table for members 

with IDs IN a set of values. In Listing 4-17 the inner query selects the IDs of all senior 

members, and the outer query returns the entries for those members.

Listing 4-17. SQL Statement to Retrieve Entries for Senior Members

SELECT *

FROM Entry e

WHERE e.MemberID IN

      (SELECT m.MemberID

      FROM Member m

      WHERE m.MemberType = 'Senior')

The inner section in this type of query must return just a single column. IN is expecting 

a list of single values (in this case a list of MemberIDs). If the inner section returns more than 

one column (for example, SELECT * FROM Member), then we will get an error.

Many nested queries such as the one in Listing 4-17 can be written in other ways—

often by using an inner join as we discussed earlier in the chapter. Some queries will feel 

more natural to you one way or the other.

Inner Queries Checking for Existence

Another type of inner query is the one we saw working with the EXISTS keyword. A state-

ment using EXISTS just looks to see whether any rows at all are returned by the inner query. 

The actual values or number of rows returned are not important. Listing 4-18 returns any 

rows from the Member table where we can find a matching row (with the same value for 

MemberID) in the Entry table.

Listing 4-18. SQL Statement to Retrieve Members Who Have Entered a Tournament

SELECT m.Lastname, m.FirstName

FROM Member m

WHERE EXISTS

      (SELECT * FROM Entry e WHERE e.MemberID = m.MemberID)

Because the actual values retrieved by the inner query are not important, the inner 

query usually has the form SELECT * FROM.

Another feature of this type of query is that the inner and outer sections are usually 

correlated. By this we mean that the WHERE clause in the inner section refers to values in 

the table in the outer section. This allows us to compare values in two tables at once, and 
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I find the easiest way to visualize this is as illustrated in Figure 4-4. We write out a member’s 

name (from the outer section) if there is a matching row in the Entry table (inner section).

It is difficult to think of a sensible EXISTS query that doesn’t correlate values in the inner 

and outer sections. Consider Listing 4-19.

Listing 4-19. What Does This Query Return?

SELECT m.Lastname, m.FirstName

FROM Member m

WHERE EXISTS

      (SELECT * FROM Entry e)

Listing 4-19 doesn’t really make any sense. It says to write out each member’s name if 

there is a row in the Entry table (any row!). If the Entry table is empty, we will get nothing 

returned; otherwise, we will get all the names of all the members. I can’t think why you’d 

ever want to do that. EXISTS queries are useful when we are looking for matching values 

somewhere else, and that is why the select condition needs to compare values from both 

the inner and outer sections.

Using Nested Queries for Updating
This book is mainly about queries for retrieving data, but many of the same ideas can be 

used for updating data and adding or deleting records. In Chapter 1 we looked at simple 

queries such as updating the phone number of a particular member, as in Listing 4-20.

Listing 4-20. Updating a Single Phone Number

UPDATE Member m

SET m.Phone = '875076'

WHERE m.MemberID = 118

We can also update several records at a time; for example, we could update some aspect of 

all the senior members by changing the WHERE clause in Listing 4-20.

In Chapter 1 we also looked at inserting and deleting rows from a table. Listing 4-21 

shows a simple example of inserting a row into the Entry table. We list the columns we are 

providing values for and then the values.

Listing 4-21. Inserting a Row into the Entry Table

INSERT INTO Entry (MemberID, TourID, Year)

VALUES (153, 25, 2007)
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Now let’s consider the situation where we want to add an entry for tournament 25 in 

2007 for each of the juniors in the club. We want to add a set of rows to the Entry table, as 

shown in Figure 4-6, where the left column has the member IDs for all the juniors and the 

next two columns are the specific tournament (25) and year (2007) for each entry.

Figure 4-6. Rows to be added to Entry table

We can write an SQL query to return a set of rows like those in Figure 4-6, as shown in 

Listing 4-22. This query is a little different from others we have looked at because it has 

constants in the SELECT clause. It will construct a row for each junior member with the 

member’s ID and the two constants 25 (for the tournament) and 2007 (for the year).

Listing 4-22. Constructing New Entry Rows for Junior Members

SELECT MemberID, 25, 2007

FROM Member

WHERE MemberType = 'Junior'

Now we can use Listing 4-22 as a subquery in our insert query in Listing 4-21. Rather 

than provide just one value with the VALUES keyword, we can provide a set of values 

resulting from the subquery. Listing 4-23 shows how we can do this. The inner SELECT 

query will produce the set of rows in Figure 4-6, and the outer INSERT query will put them 

in the table.

Listing 4-23. Inserting Entries for Juniors into Tournament 25 for 2007

INSERT INTO Entry (MemberID, TourID, Year)

      SELECT MemberID, 25, 2007

      FROM Member

      WHERE MemberType = 'Junior'

The same potential for using nested queries applies to other updating issues. Say, for 

the purpose of finding an example, that after entering data in the Entry table for the 2007 

social tournament at Kaiapoi (tournament 25), you realize that only players with handi-

caps of 20 or more were allowed to enter. You could use a nested query to delete entries 

for members with handicaps less than 20, as shown in Listing 4-24.
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Listing 4-24. Deleting Entries from Tournament 25, 2007, for Low Handicap Members

DELETE FROM Entry

WHERE TourID = 25 AND Year = 2007 AND

MemberID IN

      (SELECT MemberID FROM Member WHERE Handicap < 20)

Summary
We can use nested queries along with the keywords IN and EXISTS in many situations. 

Many nested queries can be written in alternative ways. In Chapter 9, we will look at 

performance issues relating to different ways of expressing queries, but in general you 

should use the way that feels most natural to you when designing a query.

The following are the main types of nested queries:

Nested queries can be used in many situations, including the following:

Nested Query Example

Replacing a single value 
with a subquery that returns 
a single value

SELECT * FROM Entry e WHERE e.MemberID = 235
The previous can be replaced with this: 
SELECT * FROM Entry e WHERE e.MemberID =

(SELECT m.MemberID FROM Member m WHERE m.LastName = 
  'Cooper')

Replacing a set of values 
with a subquery returning 
a set of single values  

SELECT * FROM Entry e WHERE e.TourID IN (36,38,40)
The previous can be replaced with this: 
SELECT * FROM Entry e WHERE e.TourID in

(SELECT t.TourID FROM Tournament t WHERE t.TourType =
   'Open')

Checking for the 
existence of rows 

SELECT * FROM Member m WHERE EXISTS
(SELECT * FROM Entry e WHERE e.MemberID = m.MemberID)

Show us members who have a corresponding row in the Entry table.

Task Example

Comparing values with 
the results of aggregates

SELECT * FROM Member m WHERE m.Handicap <
(SELECT AVG(Handicap) FROM Member)

Find members with handicaps less than the average.

Constructing queries 
with negatives

SELECT * FROM Member m WHERE NOT EXISTS
(SELECT * FROM Entry e WHERE e.MemberID = m.MemberID)

Show us members who have NOT entered a tournament.

Making changes to 
table data 

INSERT INTO Entry (MemberID, TourID, Year)
 SELECT MemberID, 25, 2007
FROM Member WHERE MemberType = 'Junior'

Add a row in the Entry table for every junior for tournament 25 in 2007.
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Self Joins

In Chapter 2, we looked at simple queries on a single table. In this chapter, we’ll explore 

more complex queries on a single table—in particular, those requiring us to look at more 

than one row of the table at a time. The two types of queries we will look at are those where 

the table is involved in a self relationship and queries to answer questions such as “Which 

members entered both these tournaments?”

Self Relationships
Let’s add some more information to our Member table. Suppose some members have coaches 

assigned to them. How do we represent that in the class diagrams we talked about in 

Chapter 1? We could take the approach shown in Figure 5-1 with two classes: Member and 

Coach. Recall what the lines and numbers mean. From left to right, a coach might have several 

members he is training (the 0..n nearest the Member class). From right to left, a particular 

member might have a single coach or no coach (the 0..1 nearest the Coach class).

Figure 5-1. Data model for coaches and members (not recommended!)

The problem with the model in Figure 5-1 is that coaches, in all probability, are members 

of the club. When we implement this model with a Coach table and a Member table, some 

people will have a row recording their details in each table. For example, Brenda Nolan 

has a row in the Member table. When she takes up a role as coach, we also would need a row 

about her in the Coach table. The duplicated information (for example, two phone numbers) 

is likely to become inconsistent. What is really happening here is not that we have two 

separate classes of people—members and coaches—but that we simply have members, 

some of whom coach other members. This self relationship is shown in Figure 5-2.
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Figure 5-2. Data model for members coaching members

The relationship line in Figure 5-2 can be read in a clockwise direction to say that a 

particular member might coach several other members or none (0..n). In the other direction, 

we can read that a particular member might have one coach or none (0..1).

Relationships between classes can be represented by foreign keys, as discussed in 

Chapter 1. We can insert a foreign key column (Coach) in the Member table, as shown in 

Figure 5-3. In this case, the foreign key doesn’t refer to a different table but back to the 

Member table itself. The values in the Coach column must already exist as a value in the 

primary key field of the table, MemberID. This ensures that only valid member IDs for 

existing members are inserted in the Coach column. The first row in the table in Figure 5-3 

says that Melissa McKenzie is coached by member 153 (Brenda Nolan).

Figure 5-3. Foreign key column Coach added to the Member table
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With this table, we now can answer several different types of questions, such as:

• What are the names of the coaches?

• Who is Jane Gilmore’s coach?

• Is anyone being coached by someone with a higher handicap?

• Are any women being coached by men? 

None of these questions can be answered by using simple select or project operations. 

What we require is a self join on the Member table. The easiest way to think of a self join is 

to see how we make one.

Creating a Self Join

Remember the definition of a join between two tables (from Chapter 3): a Cartesian product 

(all combination of rows from each table) followed by a select comparing a column in 

each of the tables. For a self join, we think of two copies of the same table. In Figure 5-4, 

we see part of the Cartesian product between two copies of the Member table. To distinguish 

the different bits of the product, I’ve given the first copy an alias m and the second an alias c 

(you’ll see why in a minute). In the small section of the Cartesian product visible in Figure 5-4, 

we see the first row (Melissa) from copy m paired with rows from copy c.

Figure 5-4. Cartesian product between two copies of the Member table

For queries about coaching, the interesting rows from the Cartesian product are those 

where the value of Coach from m is the same as MemberID from c. In Figure 5-4, you can see 

that the third line contains information about Melissa (from the m copy of Member) and 

information about her coach (from the c copy of Member). Now you can see why I chose the 

Columns from first copy of Member (m) Columns from second copy of Member (c)

m.Coach c.MemberID
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aliases—m for member and c for coach. Choosing helpful aliases can make understanding 

self joins much easier. The rows we would like to select from the Cartesian product are 

those satisfying m.Coach = c.MemberID. This is the join condition required to find informa-

tion about members and their coaches. The SQL is shown in Listing 5-1.

Listing 5-1. Self Join on Member Table to Find Information About Members and Their Coaches

SELECT *

FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID

The table resulting from the self join is shown in Figure 5-5 (some of the headings of the 

columns are truncated, as it was getting rather wide).

Figure 5-5. Self join on Member table to retrieve information about members and 

their coaches

None of these ideas are going to help us if our database has not been designed properly 

in the first place. However, once we recognize that there is a self relationship involved 

(members coach other members), and that relationship has been implemented correctly 

with a foreign key (Coach), then the trickiest part has been done. With this understanding, 

it is a simple job to create the self join, as shown in Figure 5-5.

Queries Involving a Self Join

With the joined table in Figure 5-5 as our base, we can answer all sorts of questions with 

quite simple select and project operations. Whenever I need to do queries involving self 

joins, I usually perform the join first (retaining all the rows and columns as in Figure 5-5), 

because the answers are usually pretty obvious when I have the joined table (or a quick 

sketch of the columns) in front of me. Let’s see how this works with a few questions.

Information about a member (from m) Information about a member’s coach (from c)

Join condition: m.Coach=c.MemberID
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What Are the Names of the Coaches?

Looking at Figure 5-5, it is clear that the names of the coaches are in the columns coming 

from the c part of the join. We just want a list of the names in the columns c.LastName and 

c.FirstName. This is a simple project operation (that is, a subset of the columns). All we 

need to do is alter the first line of the query in Listing 5-1 to retrieve just those two columns. 

We don’t want the names repeated, so we use the keyword DISTINCT in the SQL state-

ment, as shown in Listing 5-2. For the data in Figure 5-5, this will return Brenda Nolan and 

William Cooper.

Listing 5-2. Finding the Names of the Coaches

SELECT DISTINCT c.FirstName, c.LastName

FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID

Who Is Being Coached by Someone with a Higher Handicap?

To find out who is being coached by someone with a higher handicap, we need to compare 

the handicap of the member (m.Handicap) with the handicap of that member’s coach 

(c.Handicap). We want to find the rows where the latter is greater than the former. This is 

a select operation (that is, retrieving a subset of rows). What is required is a WHERE clause 

to just retrieve those rows from the result of the join (Listing 5-1, Figure 5-5), as shown in 

Listing 5-3.

Listing 5-3. Finding Rows for Members Being Coached by Someone with a Higher Handicap

SELECT *

FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID

WHERE m.Handicap < c.Handicap

For the data in Figure 5-5, this will retrieve the data in the last four rows. (You don’t 

have to be a great golfer to be a good coach!) Having done the join and selected the appro-

priate rows, we can then choose which columns we want to appear in our final result.

List the Names of All the Members and the Names of Their Coaches

Listing the names of members and their coaches sounds pretty trivial, but if we are not 

careful, we can get it wrong. We have our joined table in Figure 5-5, and a first thought 

might be just to project the four columns containing the names. However, there are only 

10 rows in the joined table, whereas there are 20 members in the Member table. The issue 

here is that not all the members have coaches. We looked at this in the section on outer 

joins in Chapter 3. 
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To recap, let’s go back to the Cartesian product of the two copies of the Member table, 

but look at some rows involving a member with no coach, as shown in Figure 5-6.

Figure 5-6. Part of the Cartesian product between two copies of the Member table

The join condition (m.Coach = c.MemberID) is never satisfied for a member with a Null 

in the Coach field, so all those members will be missing from our joined table. We just need 

to be careful to understand what we really want. Do we want a list of all the members with 

coaches (10 rows), or a list of all the members along with their coach’s name if they have 

one (20 rows)? If it’s the latter, we need an outer join. We need to see the name of each 

member (from the m copy of the Member table), along with the name of his coach, if any, 

(from the c copy). The SQL for this outer join is shown in Listing 5-4.

Listing 5-4. Names of Members Along with the Names of Their Coach (If Any)

SELECT m.FirstName, m.LastName, c.FirstName, c.LastName

FROM Member m LEFT OUTER JOIN Member c ON m.Coach = c.MemberID

Recall from Chapter 3 that for a left outer join, where there is no matching row from the 

right-hand table, those columns will be filled with Nulls. Figure 5-7 shows some of the 

rows from the left outer join in Listing 5-4.



C HA P TE R  5  ■  S E L F  J O I N S 83

Figure 5-7. Some rows from the left outer join (Listing 5-4)

Who Coaches the Coaches, or Who Is My Grandmother?

Our self join shows us one level deep of members and coaches. If we look at the rows in 

Figure 5-7, we can see that Thomas Sexton is coached by William Cooper, who is in turn 

coached by Brenda Nolan, who doesn’t have a coach. The hierarchy isn’t all that inter-

esting for this problem, but there are several analogous situations where the hierarchy is 

of considerable interest. Genealogy is one. Consider the data model and Person table in 

Figure 5-8. We record information (just a wee bit!) about each person, including who that 

person’s mother is (we’ll just consider birth mothers or it will get too complicated).

Figure 5-8. Data model for people and their birth mothers

Person
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The relationship in Figure 5-8 can be read clockwise as “a person can be the mother of 

several other people” and in the other direction as “a person has at most one mother and 

might have none.” Now in real life, that last statement doesn’t sound right—surely everyone 

has a mother. However, our database is keeping only the data we know about, and unless 

we trace everyone back to the primeval slime, there will be some people in our table whose 

mother we do not know. Brenda is one. The table and model in Figure 5-8 are the same as 

our member and coach example, but a question like “Who is Sue’s grandmother?” seems 

a bit more likely than “Who coaches my coach?”

So how do we get information about people along with information about their mothers? 

Just as in the previous section, we need to join the Person table to itself. (Don’t forget to 

make the join an outer join so you don’t lose Brenda.) The SQL is in Listing 5-5, and the 

Access diagrammatic interface for the join is shown in Figure 5-9, along with the resulting 

table. I’ve given the first copy of the table the alias p for person and the second copy the 

alias m for mother.

Listing 5-5. People and Their Mothers

SELECT p.ID, p.FName, p.Mother, m.ID, m.FName, m.Mother

FROM Person p LEFT OUTER JOIN Person m on p.Mother = m.ID

Figure 5-9. Finding people and their mothers: Access diagram for the join (top) and the 

resulting table (bottom)

Now what about going back the next generation? For that, we want to take the result 

table in Figure 5-9 and join that to another copy of the People table (with the alias g for 

grandmother). The SQL is in Listing 5-6, and the diagram and result table are in Figure 5-10.
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Listing 5-6. People and Their Mothers and Maternal Grandmothers

SELECT p.ID, p.FName, p.Mother, m.ID, m.FName, m.Mother,

       g.ID, g.FName, g.Mother

FROM (Person p LEFT JOIN Person m ON p.Mother = m.ID)

LEFT JOIN Person g ON m.Mother = g.ID

Figure 5-10. Finding three generations: Access diagram for the joins (top) and the resulting 

table (bottom)

Clearly, we can keep making more and more self joins until we run out of generations. 

These sorts of hierarchical queries are likely to turn up whenever we have self relation-

ships. One small catch is that we must specify the number of joins in each query. Standard 

SQL doesn’t have the notion of a query that automatically keeps doing the self joins until 

it runs out of generations, such as “Find all my female ancestors.”1

A Calculus Approach to Self Joins

The questions in the previous sections were all quite easy to answer once we realized we 

needed a self join. Sometimes, however, these realizations don’t always come when you 

need them. Whenever my mind goes blank when faced with a query, I always resort to a 

calculus approach.

1. Some implementations of SQL do support recursive queries that can track through self relationships. 
Check your documentation for key phrases like WITH and CONNECT BY.
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Let’s look at our Member table again and ask a simple question: Who is Melissa’s coach? 

In Figure 5-11, you can see how to figure out the answer, even if you have never heard of a 

self join (as most people haven’t).

Figure 5-11. Finding Melissa’s coach

To find Melissa’s coach, we first find the row for Melissa (m in Figure 5-11), and then 

we find another row (c for coach) that has the MemberID value the same as Melissa’s coach. 

Then we know that Melissa’s coach is Brenda. You don’t need to know anything about self 

relationships or foreign keys or joins to figure that out. But once you have that logic clearly 

in your mind, you can write it down in calculus notation, and then the translation to SQL 

is pretty straightforward.

Let’s write that logic out a bit more clearly:

I need to look at two rows (m and c) in the Member table, and I want to write out
c.FirstName, where c.MemberID has the same value as m.Coach and m.FirstName
is “Melissa”.

Or, you may prefer the more condensed notation in Listing 5-7, where the bit on the left 

of the bar is what we want to write out and the bit on the right explains the condition.

Listing 5-7. Calculus Expression to Find the Name of Melissa’s Coach

{c.FirstName | Member(c), (m) Member(m)

and c.MemberID = m.Coach and m.FirstName = 'Melissa'}

The SQL follows quite easily from these calculus descriptions of the query and is shown 

in Listing 5-8.

m

c
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Listing 5-8. SQL to Find the Name of Melissa’s Coach

SELECT c.FirstName

FROM Member m, Member c

WHERE c.MemberID = m.Coach AND m.FirstName = 'Melissa'

So how does this calculus approach correspond to the algebra approach? As you might 

expect, the resulting SQL is just an alternative way of stating the same thing. In Listing 5-8, the 

middle line is the Cartesian product, and the first part of the WHERE clause is a join condi-

tion. The statement FROM Member m, Member c WHERE c.MemberID = m.Coach is just another 

way of expressing the self join we used in the previous sections.

Let’s try one of the other queries using a calculus approach: Who is being coached by 

someone with a higher handicap? The picture I would need in my head to answer this 

question is shown in Figure 5-12.

Figure 5-12. Deborah is coached by someone with a higher handicap.

Here is the informal calculus statement representing the logic depicted in Figure 5-12:

I’m going to look at every row (m) in the Member table and will write out m.LastName
if there exists some other row (c) in the Member table where c.MemberID is the same
as m.Coach and m.Handicap is less than c.Handicap.

m

c

>
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If we start with our finger (labeled m) at the top of the table and check each row, the first 

row that satisfies our condition is for Deborah Bridges. We can find another row (labeled c 

in Figure 5-12), which is for Deborah’s coach, William Cooper (m.Coach = c.MemberID). 

Deborah’s handicap (m.Handicap) is less than her coach’s handicap (c.Handicap). We 

can carry on with finger m checking the rest of the rows to see if any other rows satisfy the 

condition (another three do).

The more formal expression for the calculus statement is shown in Listing 5-9.

Listing 5-9. Calculus Expression to Find the People with a Lower Handicap Than Their Coach

{m.FirstName | Member(m) and (c) Member(c)

and c.MemberID = m.Coach and m.Handicap < c.Handicap}

The SQL follows in a straightforward manner, as shown in Listing 5-10.

Listing 5-10. SQL to Find the People with a Lower Handicap Than Their Coach 

SELECT m.FirstName

FROM Member m, Member c

WHERE c.MemberID = m.Coach AND m.Handicap < c.Handicap

Once again, you can see the equivalent of the self join in Listing 5-10 (FROM Member m, 

Member c WHERE c.MemberID = m.Coach). The usefulness of this calculus approach is that 

you don’t need to understand what a self join is, nor must you make the mental leap that you 

need one. By thinking in terms of virtual fingers and which rows are involved in helping you 

with your decision, you can sketch a calculus-type statement of the criteria. The SQL 

usually follows quite easily from that.

Questions Involving “Both”
In the “Avoiding Common Mistakes” section of Chapter 2, we looked at questions such as 

“Which members have entered both tournaments 24 and 36?” To recap, I’ve reproduced 

the Entry table in Figure 5-13 and a common first attempt at an SQL statement for this 

question in Listing 5-11.

Listing 5-11. SQL to Find Members Who Have Entered Both Tournaments 24 and 36 

(Won’t Work!)

SELECT e.MemberID

FROM Entry e

WHERE e.TourID = 24 AND e.TourID = 36
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Listing 5-11 includes a relational algebra select operation (the WHERE clause), which 

will retrieve a subset of the rows. However, recall that the condition (e.TourID = 24 AND 

e.TourID = 36) is applied to each row individually. Can we find a single row where the 

condition is true? From a calculus perspective, our virtual finger (labeled e) will look at 

each row in turn to see if (e.TourID = 24 AND e.TourID = 36). Because the TourID column 

will always contain only a single value, the condition will never be satisfied. The query in 

Listing 5-11 will never return any rows because the value in TourID cannot be two different 

things (24 and 36) simultaneously. Such a query can be quite dangerous, because the user 

may interpret the empty result as meaning that no members have entered both tourna-

ments, whereas the query is actually incorrect.

Figure 5-13. Entry table

To answer the question, we need to look at more than one row in the Entry table at 

the same time. I find a calculus approach the most natural for dealing with questions 

involving “both.”
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A Calculus Approach to Questions Involving “Both”

The picture I need in my head to answer “Which members have entered both tourna-

ments 24 and 36?” is shown in Figure 5-14.

Figure 5-14. Member 228 has entered both tournaments 24 and 36.

Looking at Figure 5-14, it is pretty clear that member 228 has entered both the tourna-

ments. We can think of it in informal calculus terms:

I’m going to look at every row (e1) in the Entry table. I’ll write out that row’s
member ID if TourID has the value 24 and I can also find another row (e2) in the
Entry table with the same value for memberID and that row has 36 as the value for
TourID.

Listing 5-12 shows the more formal calculus expression.

Listing 5-12. Calculus Expression to Find the Members Who Have Entered Both Tournaments 24 

and 36

{e1.MemberID| Entry(e1) and (e2) Entry(e2)

and e1.MemberID = e2.MemberID and e1.TourID = 24 and e2.TourID = 36}

The SQL follows from here and is shown in Listing 5-13. If you have trouble with it, refer 

to Figure 5-14.

Listing 5-13. SQL to Find Members Who Have Entered Both Tournaments 24 and 36 (Will Work!)

SELECT e1.MemberID 

FROM Entry e1, Entry e2

WHERE e1.MemberID = e2.MemberID

      AND e1.TourID = 24 AND e2.TourID = 36

e1

e2
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Questions involving the word “both” often require us to look at more than one row in a 

table. In our first attempt, Listing 5-11, we were looking at only one row at a time (one finger 

labeled e). This will never work. We need to investigate at least two rows (two fingers e1 

and e2), with matching MemberID values. In more formal calculus terms, we need two tuple 

variables e1 and e2, which scan all the rows in the Entry table looking for pairs that match 

our criteria. 

An Algebra Approach to Questions Involving “Both”

As always, we have several ways to think about a query. Take a look at the middle two lines 

of Listing 5-13. FROM Entry e1, Entry e2 is a Cartesian product (which will give us every 

combination of pairs of rows), followed by a select operation (WHERE e1.MemberID = 

e2.MemberID). This is a join. In fact, it is a self join between two copies of the Entry table. 

Part of the join between two copies of the Entry table is shown in Figure 5-15.

Figure 5-15. Part of the self join between two copies of the Entry table
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The self join in Figure 5-15 shows those combinations of rows from the Entry table for 

the same member. For example, we have every combination or rows involving member 

228. We can use this self join to answer the question about members who have entered 

both tournaments 24 and 36. We just need to find a row that has 24 from the first copy and 

36 from the second copy (or vice versa)—that is, e1.TourID = 24 AND e2.TourID = 36.

The SQL for this self join followed by the select condition is shown in Listing 5-14.

Listing 5-14. SQL to Find Members Who Have Entered Both Tournaments 24 and 36 

(Using a Self Join)

SELECT e1.MemberID

FROM Entry e1 INNER JOIN Entry e2 ON e1.MemberID = e2.MemberID

WHERE e1.TourID = 24 AND e2.TourID = 36

If you compare Listings 5-13 and 5-14, you will see how similar they are. They will both 

produce exactly the same result. You will probably find one or other to be more intuitive. 

Summary
Many queries require us to obtain information from two rows of a table. This turns up in 

a number of situations. The main ones are where we have self relationships or questions 

involving the word “both.”

Self Relationships

We have a self relationship when different instances of a class are related to each other. In 

the example in this chapter, we had that members are coaches of other members. Queries 

about coaches or coaching relationships require self joins, which take two copies of the 

table and join them. The self join to provide the names of members and their coaches 

follows. The copy with the information about the member has the alias m, and the copy 

with information about the coach has the alias c.

SELECT m.LastName, m.FirstName, c.LastName, c.FirstName

FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID
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Questions Involving the Word “Both”

Questions with the word “both” often mean we need to look at two rows in a table. In our 

example, we wanted to find the MemberID of members who have entered both tournaments 24 

and 36. We needed to find two rows in the Entry table (e1 and e2) for that member: one for 

tournament 24 and the other for tournament 36. The following is the calculus-based SQL 

statement:

SELECT e1.MemberID

FROM Entry e1, Entry e2

WHERE e1.MemberID = e2.MemberID AND e1.TourID = 24 AND e2.TourID = 36

This statement is equivalent to a self join between two copies of the Entry table (on 

e1.MemberID = e2.MemberID), followed by a select condition to find the rows for the two 

tournaments.
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C H A P T E R  6

More Than One Relationship 
Between Tables

In order to get correct information from your database, it is essential that the design is 

appropriate and you understand it properly. You have already seen simple relationships 

between tables (for example, each member is associated with one member type), and in 

Chapter 5, we looked at self relationships (for example, members may coach other members). 

Another situation that occurs frequently is where there is more than one relationship 

between two tables.

Representing Multiple Relationships 
Between Tables
Let’s look at the model in Figure 6-1, which shows how we might incorporate the idea of 

teams into our club database. The top line in Figure 6-1 can be interpreted, from left to 

right, as that a particular member might manage (at most) one team; and from right to 

left, as that each team has exactly one manager. The bottom relationship means, from left 

to right, that a particular member might play in (at most) one team; and from right to left, 

that a team has at least one member and could have many members playing for it.

Figure 6-1. Two relationships between the Member and Team classes
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We can represent this model by introducing a new table, Team, into our database. The 

top relationship can be represented by including a foreign key field Manager in the Team

table, and the bottom relationship can be represented by including a foreign key field Team

in the Member table. Some sample rows from the two tables (with some of the columns in 

Member hidden) are shown in Figure 6-2.

Figure 6-2. Foreign keys Team in Member table and Manager in Team table to represent the 

relationships in Figure 6-1

From the Member table, we can see that four people play for TeamB (Brenda Nolan, 

William Cooper, Robert Pollard, and Betty Young) and from the Team table, we can see that 

member 153 (Brenda Nolan) is the manager of TeamB. The eagle-eyed will notice that 

there is nothing in the data model that says whether or not a manager must be a member 

of the team. TeamB’s manager is a member of TeamB, whereas TeamA’s manager 239 

(Thomas Spence) is not a member of TeamA. The only constraints implied by the foreign 

keys are that the manager of a team must be in the Member table and a member can belong 

only to a team that exists in the Team table.

Member Team
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Algebra Approach to Two Relationships 
Between Tables
We can make a couple of simple joins between the Team table and Member table. If we want 

to know information about teams and also want to include information about the managers, 

we can take the Team table and join it with the Member table on the foreign key Manager, as 

shown in Listing 6-1 and Figure 6-3 (the figure shows the Access join diagram and just 

some of the columns of the resulting table).

Listing 6-1. Teams with Additional Information About Their Managers

SELECT *

FROM Member m INNER JOIN Team t on t.Manager = m.MemberID

Figure 6-3. Joining Member and Team to get additional information about team managers 

(Listing 6-1)

Figure 6-3 shows the information about teams, such as that TeamA practices on Tuesday 

and the manager has ID 239. By joining the Member table, we get the added information 

that the manager’s name is Thomas Spence.

Join condition. t.Manager=m.MemberID
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If we want to find information about team members and include information about 

their teams, we can take the Member table and join it to the Team table on the foreign key 

Team, as shown in Listing 6-2 and Figure 6-4.

Listing 6-2. Members with Additional Information About Their Teams

SELECT * FROM Member m INNER JOIN Team t on m.Team = t.TeamName

Figure 6-4. Joining Member and Team to get additional information about members’ teams 

(Listing 6-2)

So far, so good. However, a closer look at the result table in Figure 6-4 shows that we 

might need some more information. For a particular member, we have her team and the 

number of the team manager. The name of the team manager would be useful to have as 

well. We need to join the result table in Figure 6-4 to another copy of the Member table to 

find the name of the manager. Listing 6-3 and Figure 6-5 show how this is done.

Listing 6-3. Joining an Additional Copy of the Member Table to See Names of Managers

SELECT *

FROM (Member m INNER JOIN Team t ON m.Team = t.TeamName)

INNER JOIN Member m2 ON t.Manager = m2.MemberID
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Figure 6-5. Joining another copy of the Member table to get names of team managers 

(Listing 6-3)

The result table in Figure 6-5 is very useful for generating reports about teams and their 

members. Figure 6-6 shows a report based on the query in Listing 6-3. The report has been 

grouped by team, with the team and manager information (from the Team table and m2 

copy of the Member table) in a group header. The members of the team (from the first copy 

m of the Member table) are in the detail part of the report.

Figure 6-6. A report based on the query in Listing 6-3 (the result table in Figure 6-5)

Data from m2
copy of Member
and from 
Team tables Data from

first copy of 
Member table
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One mistake people sometimes make when trying to get information like that shown in 

Figure 6-5 is to not recognize that two copies of the Member table are required. This often 

happens when designing a query in Microsoft Access (2007). Access automatically joins 

tables in a query on the foreign keys. However, in a situation like this, where each table 

has a foreign key referencing the other, Access includes only one copy of each table and 

effectively creates the join shown in Listing 6-4 and Figure 6-7.

Lisitng 6-4. Just One Join Between the Tables (But with a Complex Condition)

SELECT * FROM Member m INNER JOIN Team t

ON (m.MemberID = t.Manager) AND (m.Team = t.TeamName)

Figure 6-7. Just one join between the tables but with a complex condition (Listing 6-4)

To understand what is happening with the join in Listing 6-4 and Figure 6-7, consider 

first the Cartesian product of Member and Team. The Cartesian product gives us every combina-

tion of rows from each table. The join condition says only rows where the MemberID is the 

same as the Manager and Team and TeamName are the same. In everyday language, this amounts 

to “Show me the members who manage the team they are in.” For our data, that is just the 

single row for Brenda Nolan we see in Figure 6-7. This can be disconcerting for beginners, 

who quite rightly wonder what happened to all the other team members. In Access, you 

must manually remove one of the join conditions and add another copy of the Member

table, as in Figure 6-5.

Just one join with a complex condition.
m.Team=t.TeamName AND t.Manager=m.MemberID
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Calculus Approach to Two Relationships 
Between Tables
You can use different ways to construct the query to retrieve all the information about a 

team (members’ names, team name, and manager’s name) for a report like the one in 

Figure 6-6. I find the idea of two joins quite intuitive, but other people prefer to take a 

calculus approach. 

I have reproduced the two tables in Figure 6-8. Now let’s see how we can pick a member 

and find out what team he is in and who the manager is for that team.

Figure 6-8. Finding a team member (William Cooper), his team’s name, and the name of the 

team’s manager

Without needing to think about joins, we can find the information we require. We need 

information from three rows. Let’s look at one specific case. One row (m) from the Member

table will give us the name of a member (William Cooper in Figure 6-8). We need to find 

the row (t) in the Team table for that member’s team (m.Team = t.TeamName). Then we need 

another row in the Member table (m2) for the manager of the team (t.Manager = m2.MemberID). 

The calculus expression to find all such rows is shown in Listing 6-5.

Listing 6-5. Calculus Expression for Information About Members, Their Team, and Their 

Team’s Manager

{m,t,m2 | Member(m), Team(t), Member(m2)

AND m.Team = t.TeamName AND t.Manager = m2.MemberID}

The SQL equivalent is in Listing 6-6.

Member Team

m2

m
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Listing 6-6. SQL Statement for Information About Members, Their Team, and Their 

Team’s Manager

SELECT * FROM Member m, Team t, Member m2

WHERE m.Team = t.TeamName AND t.Manager = m2.MemberID

Listing 6-6 is equivalent to the SQL in Listing 6-3. The WHERE clause is the equivalent 

of a join between Member (m) and Team (t) on m.Team = t.TeamName, and another join between 

Team and another copy of Member (m2) on t.Manager = m2.MemberID.

Business Rules
The data model in Figure 6-1 shows the two relationships between members and teams: 

members can belong to teams, and members can manage teams. When we implement 

these relationships with foreign keys, the constraints that are placed on the data are quite 

simple. A member can be in only a team that exists in the Team table, and a team can be 

managed only by someone in the Member table.

Other constraints are likely to apply in various situations. For example, we might have 

the additional constraints that a team can have no more than four members and/or the 

manager must be a member of the team (or not). Referential integrity alone cannot address 

these rules.

Relational database products will usually provide some way to enforce such constraints. 

Large systems such as SQL Server and Oracle provide triggers. Triggers are actions that 

take place at a specified time (for example, when inserting or updating a record). The 

trigger will check and reject any changes that do not obey the rules. In Access and other 

products, it is not possible to apply such constraints to the tables themselves. However, 

you can attach macros, which can do some sort of checking, to input forms.

We won’t look in detail at how such constraints are implemented in various products, 

but we will look at how queries can help find any instances where the constraints are not 

satisfied. Although this is finding the problem after it has occurred, variations of these 

queries would form a basis for any trigger or macro that you would need to write to enforce 

the constraints.

Let’s look at finding teams whose managers are not members of the team. My mind 

often goes blank when faced with a query like this, and in that case, I always take a calculus 

approach. This means picturing the tables involved and imagining the type of instance I 

am seeking. Take a look at Figure 6-9.

In Figure 6-9, TeamA’s manager is 239, and we can see from the Member table that 

member 239 is not a member of any team. If we had a constraint that managers must 

belong to the team, TeamA would not obey it.
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Figure 6-9. Finding teams whose managers do not play for the team

To find all teams like this, we would say:

Find the team names from all the rows (t) in the Team table where the matching row
(m) in the Member table for the team manager (i.e., t.Manager = m.MemberID) has a
team (m.team) that is either empty or different from the team in the Team table
(m.Team <> t.TeamName).

The slightly more formal calculus notation representing this situation (and illustrated 

in Figure 6-9) is shown in Listing 6-7.

Listing 6-7. Calculus Expression to Find Teams Where the Manager Is Not a Member of the Team

{t.TeamName | Team(t) and (m) Member(m) AND t.Manager = m.MemberID

AND (m.Team IS NULL OR m.Team <> t.Team)}

The equivalent SQL is shown in Listing 6-8. The middle two lines are equivalent to a 

join between the two tables on m.MemberID = t.Manager.

MemberTeam

t

m ??
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Listing 6-8. SQL to Find Teams Where the Manager Is Not a Member of the Team (Based 

on Calculus)

SELECT t.teamname

FROM Member m, Team t

WHERE m.MemberID = t.Manager

AND (m.Team <> t.Teamname OR m.Team IS NULL)

The query could also be constructed from an algebra perspective, as shown in Listing 6-9, 

if you prefer this approach.

Listing 6-9. SQL to Find Teams Where the Manager Is Not a Member of the Team (Based 

on Algebra)

SELECT t.teamname

FROM Member m INNER JOIN Team t ON m.MemberID = t.Manager

WHERE m.Team <> t.Teamname OR m.Team IS NULL

Why have we included the IS NULL condition in Listings 6-8 and 6-9? You might 

remember from Chapter 2 that if we make a comparison with a Null value, the result is 

false in SQL. If we want to find managers who aren’t in a team, we need to specifically 

include that possibility in our query. Had the requirement been just that a manager must 

not belong to a different team, we could have left out the checking of Null values, because 

a manager with no team would have been OK. As always, clearly understanding what you 

are actually trying to find can be the most difficult part of formulating any query.

The queries in Listings 6-8 and 6-9 will find teams with incorrect managers, but only 

after they have been added to the database. How do we prevent them from being added in 

the first place? The solution depends on which database product you are using. Before 

changes to data are finally committed to a database, they are usually recorded in a buffer 

of some sort. For example, in SQL Server, the records being updated or added are kept in 

a temporary table called inserted. If we add or update some records to the Team table, a 

temporary table (inserted) that has the same structure as the Team table is created to hold 

the new records temporarily. We want to perform a query similar to that in Listing 6-10 to 

check if any of the new records have managers who don’t obey the constraint. However, 

instead of looking at the Team table, we want to look at the records in the temporary inserted

table and count how many of those are invalid.

Listing 6-10. Part of a SQL Server Trigger to Prevent Adding Invalid Team Managers

IF

   (SELECT COUNT(*)

    FROM Member m INNER JOIN inserted i ON m.MemberID = i.Manager

    WHERE m.Team <> i.Teamname OR m.Team IS NULL)

    <> 0)

BEGIN
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    Rollback Tran

END

The two innermost lines in Listing 6-10 are almost exactly the same as the query in 

Listing 6-8, except we have replaced Team with inserted. Rather than selecting each of the 

rows with incorrect managers, we have just counted how many of these rows exist. The IF 

statement says if there are any invalid records (COUNT() <> 0), then don’t add the records 

to the database (that is, roll back the whole transaction).

This is a bit of a crude approach, because if any of the new records are incorrect, the 

whole lot gets rejected. You will need to consult the documentation for your database 

product to see how to develop triggers that work efficiently, but the idea of using a query 

to check the validity of new records is a common one. 

In Access, the checking is done at the interface level, usually on a form. Instead of checking 

the inserted table as in Listing 6-9, we would create a macro to investigate the values of 

fields on the form before committing them to the database. 

Whatever the product, for a constraint of this type, we will always need to look at the 

new Team values and compare them with the existing information in the Member table, so a 

query like the one in Listing 6-8 or Listing 6-9 provides a good starting place.

Summary
There can be more than one relationship between tables. For example, “a member may 

belong to a team” is one relationship. “A team has a club member who is the manager” 

is another relationship. To find the information about a member’s team (including the 

manager’s ID) requires a join between Member and Team. If we want to also find the name 

of the manager, we need to join that result to another copy of the Member table, like this:

SELECT * FROM

(Member m INNER JOIN Team t ON m.Team = t.TeamName)

INNER JOIN Member m2 ON t.Manager = m2.MemberID

When we have two relationships between tables, there can be quite complex business 

rules or constraints involving the relationship, such as that the manager must be a member of 

the team she captains, a manager should not be a member of any team, and so on. These 

often require the use of triggers. The types of queries discussed in this chapter will be helpful 

in formulating the code required in triggers.
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C H A P T E R  7

Set Operations

One of the great strengths of relational database theory is that the tables (or more formally, 

the relations) are made up of distinct rows and so can be considered a set. You can then 

use all the power of mathematical set theory to help you with combining and extracting 

specific information. Don’t be alarmed by the words “mathematical” and “theory,” as the 

ideas presented are both simple and elegant. 

The algebra notation introduced in Chapters 1 and 2 is a useful way of expressing queries, 

especially as they become more complex. I will use the algebra notation in this chapter, 

but will always give you an SQL equivalent so you can choose which representation you 

find the most helpful. In this chapter, we will look at four set operations:

• Union

• Intersection

• Difference 

• Division

Many implementations of SQL (but not all) have keywords that support the first three 

of these operations directly. We will look at how to use these keywords, as well as alterna-

tive ways to achieve the same result when the keywords are not available.
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Overview of Basic Set Operations
We will look at each of the set operations in turn, but so that you know where we are heading, 

I’ll begin with a very quick overview of the three most common operations: union ( ), 

intersection ( ), and difference (–). Imagine we have membership tables from two golf 

clubs. We might want to do the following:

• Determine who is in both clubs.

• Form a large list that combines all the members.

• Find out who is in one club but not the other. 

The basic set operations allow us to carry out all these tasks.

Let’s assume that the two clubs keep the names of their members in two tables that 

have exactly the same columns (more about this in the next section). Let’s say the two 

tables are those shown in Figure 7-1. (OK, they are very small clubs!)

Figure 7-1. Two tables of member names

The basic set operations on these two tables are summarized in Figure 7-2. The two 

club tables have been overlaid so that the members in common are superimposed. ClubA

is the top table in each picture.

The union operator (top left in Figure 7-2) shows all the names from each table (with 

duplicates removed). The intersect operator (top right) returns the two rows that appear 

in both tables. The difference operators (bottom) return those rows that are found in one 

club but not the other.

ClubA ClubB
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Figure 7-2. The basic set operations on the two tables ClubA (top) and ClubB (bottom)

Union-Compatible Tables
The set operations union, intersection, and difference operate between two sets of rows. 

It does not make any sense to try to compare rows in sets that have very different structures, 

such as those in Figure 7-3.
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Figure 7-3. It makes no sense to try to compare rows with different structures.

So what determines whether two sets of rows can be compared using the set operations 

union, intersection, and difference? Formally, the two sets must have the same number of 

columns, and each column must have the same domain. Strictly speaking, a domain is a 

set of possible values. However, in practice, the requirement for set operations is that the 

corresponding columns in each set of rows have the same types—both character, both 

integer, and so on. The names of the columns do not need to be the same. Sets or tables 

that meet these requirements are referred to as being union compatible, although the 

requirement is necessary for the intersection and difference operations as well.

Figure 7-4 shows pairs of membership tables from different clubs. The two tables on 

the left are union compatible. Even though the names of the columns are different, they 

have the same number of columns, and corresponding columns have the same types. The 

two tables on the right are not union compatible. Even though they have columns with 

the same names, the order is such that the fourth column has a character type in the top 

table and a number type in the bottom, and vice versa for the last column. 

Different implementations of SQL may interpret the strictness of this “sameness” of 

domains or types differently. Strictly speaking, two fields defined as CHAR(10) and CHAR(12) 

have different domains, but many implementations of SQL will allow these to be regarded 

as the same for the purposes of set operations. Some implementations will also convert 

numbers into characters to enable set operations to be carried out. I find this particularly 

scary and don’t recommend you let your application make these sorts of decisions for 

you. The following sections demonstrate how you can use SQL to make your tables union 

compatible.

Entry tableMember table
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Figure 7-4. Union compatiblity of tables

Union
Union allows you to combine all the rows in two union-compatible tables (or two sets 

of rows), as in the top left of Figure 7-2. Listing 7-1 shows the algebra expression for the 

union of the two tables ClubA and ClubB.

Listing 7-1. Algebra Expresion for the Union of Two Compatible Tables

ClubA  ClubB

The order of the tables in the expression does not matter, because the resulting rows in 

the union will be the same; that is, ClubA  ClubB = ClubB  ClubA.

To carry out a union in SQL, we need to first retrieve two sets of rows using two SELECT 

clauses. We can then combine the two sets with the UNION keyword. Listing 7-2 shows 

the SQL for performing a union between the pair of tables on the left side of Figure 7-4.

Listing 7-2. SQL for the Union of Two Compatible Tables

SELECT * FROM ClubA

UNION

SELECT * FROM ClubB

ClubA

ClubB

ClubC

ClubD

a) Union compatible b) Not union compatible



112 CH AP T E R  7  ■  SE T  O P E R A T I ON S

The resulting table will include all the rows from both tables with no duplicates, so you 

will see only one row each for Barbara Olson and Robert Pollard, as shown in Figure 7-5. 

If you wish to retain the duplicates for some reason, you can use the key phrase UNION ALL.

Figure 7-5. Union of ClubA and ClubB

Union-compatible tables do not need to have the same column names. The names of 

the columns in the resulting virtual table will usually be from one of the tables. In the example 

in Figure 7-5, the column names are the same as the first table mentioned in the union 

query in Listing 7-2.

Ensuring Union Compatibility

When tables are not union compatible, you can often remedy the incompatibility in the 

SELECT clauses. For example, the two tables on the right side of Figure 7-4 have the columns 

in different orders. We can alter that order in the query, as shown in Listing 7-3.

Listing 7-3. Ensuring the Tables Have Columns in the Same Order

SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubC

UNION

SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubD

Another incompatibility problem occurs when the types of the columns have been 

defined differently. For example, the ClubC table may have the Handicap field declared as 

an INT, whereas the ClubD table may have (unwisely) stored the Handicap values in a CHAR 

field. As I mentioned earlier, different implementations of SQL will treat these inconsis-

tencies in a variety of ways. Many will try to convert the numbers to strings or vice versa. 

You can take control of these conversions yourself (which is probably a good idea) by using 

type-conversion functions. 
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For example, in SQL Server, the expression CONVERT(INT, Handicap) would take the 

value in the Handicap field and convert it to an integer value. If the Handicap field in the 

ClubD table were a CHAR type, then Listing 7-4 would ensure that the types were integers 

in both tables. Of course, if any of the values in the ClubD table’s Handicap column could 

not be converted to integers, you would get an error, and you would need to fix the data.

Listing 7-4. Ensuring the Tables Have Columns of the Same Type

SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubC

UNION

SELECT MemberID, LastName, FirstName, CONVERT(INT, Handicap), MemberType FROM ClubD

Selecting the Appropriate Columns

When combining data from two tables, you need to think about what it is you actually 

want. The examples with the clubs are rather contrived (as you have no doubt noticed). It 

is very unlikely that two clubs would have members with the same ID numbers and iden-

tical membership types. For example, a more likely scenario is that if Barbara Olson did 

belong to two clubs, she would have different data in each club table. In the ClubA table, 

she might be a “Senior” with ID 258. In the ClubB table, she might be an “Associate” member 

with an ID of 4573. If we do the union in Listing 7-2, where we select all the columns from 

each table, the two rows for Barbara will be different, and so both will appear in the result 

of the union, as in Figure 7-6.

Figure 7-6. Two records appear for Barbara Olson in the union because the rows are different.

We need to consider what we really want from such a union. If we need a list of names 

for a joint Christmas party for the two clubs, then we don’t want anyone listed twice. The 

way to avoid duplicates is to project just the names from each table. The algebra expression is 

shown in Listing 7-5 and the SQL in Listing 7-6.
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Listing 7-5. Relational Algebra to Project the Appropriate Columns Before the Union

Listing 7-6. SQL to Project the Appropriate Columns Before the Union

SELECT FamilyName, Name FROM ClubA

UNION

SELECT LastName, FirstName FROM ClubB

With the query in Listing 7-6, we will now get just one row for Barbara in the union. This 

will, of course, depend on her name being spelled the same in both clubs. And what if 

there are actually two different people named Barbara Olson? Sadly, real data is fraught 

with these sorts of problems, and there is little you can do other than be aware of them.

Uses for Union

The main use for union is combining data from two or more tables, as we have been doing 

in the previous sections. For example, if data for different months had been stored in 

separate tables (not necessarily a great design decision!), you could use several union 

operations to combine the data for the whole year.

It is also possible to combine two sets of rows from the one table. Say we wanted to find 

the IDs of all the people who have entered either tournament 24 or tournament 40 from 

the Entry table in Figure 7-7.

Figure 7-7. Entry table
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We could get a list of all the IDs of members entering tournament 24 and a list of IDs 

of members entering tournament 40, and take the union. To get the list of IDs for tour-

nament 24, we need to select the rows for that tournament (TourID = 24), and then project 

just the MemberID column. Similarly for tournament 40, we need to select the rows where the 

value of TourID is 40. The algebra and the SQL for the union are shown in Listings 7-7 and 7-8.

Listing 7-7. Relational Algebra for Finding IDs of Members Who Have Entered Either 

Tournament 24 or 40

Listing 7-8. SQL for Finding IDs of Members Who Have Entered Either Tournament 24 or 40

SELECT MemberID FROM Entry

WHERE TourID = 24

UNION

SELECT MemberID FROM Entry

WHERE TourID = 40

While Listing 7-8 will find the correct IDs, most people would use the more straightfor-

ward query in Listing 7-9 to achieve the same result.

Listing 7-9. Finding IDs of Members Who Have Entered Either Tournament 24 or 40

SELECT MemberID FROM Tournament

WHERE TourID = 24 OR TourID = 40

Another use for union is to perform the equivalent of a full outer join in products that don’t 

support the FULL OUTER JOIN key phrase. Microsoft Access 2007 is one product that does 

not implement full outer joins explicitly. Let’s recap the different types of outer joins that we 

discussed in Chapter 3. Figure 7-8 shows the different types of joins between the Member table 

(just a very little one!) and the Type table. All the joins are on MemberType = Type. The inner join 

would have just three rows. We would not get a row for William Cooper, as he does not 

have a value in MemberType, and we would not get a row for the “Associate” type, as no row 

in the Member has this value in the MemberType field. The left outer join ensures that we see all 

the rows from the left-hand table (Member); the right outer join gives us all rows from the 

right-hand table (Type); and the full outer join gives us all rows from both tables. Figure 7-8 

illustrates these joins.

))
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Figure 7-8. The different joins between Member and Type (on MemberType = Type)

Figure 7-8 shows that, in this case, the full outer join consists of the unique rows from 

each of the other two outer joins—that is, a union. So if your SQL implementation does 

not explicitly support a full outer join, you can always achieve the same result with the 

code in Listing 7-10.

Listing 7-10. A Full Outer Join Expressed As the Union Between a Left and Right Outer Join

SELECT * FROM Member LEFT JOIN Type ON MemberType = Type

UNION

SELECT * FROM Member RIGHT JOIN Type ON MemberType = Type

Member Type

Member inner join Type

Member left join Type

Member right join Type

Member full join Type
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Intersection
If you take the intersection of two compatible tables, you will retrieve those rows that are 

found in both tables. The intersection of our two tables, ClubA and ClubB, is reproduced in 

Figure 7-9, and the algebra expression is in Listing 7-11.

Listing 7-11. Algebra to Retrieve Names That Are in Both ClubA and ClubB

Figure 7-9. Intersection of ClubA and ClubB returns rows common to both tables.

The keyword for the intersection operator in SQL is INTERSECT. The expression to 

retrieve the two rows (for Barbara Olson and Robert Pollard) is shown in Listing 7-12.

Listing 7-12. Finding the Names That Are in Both ClubA and ClubB

SELECT FamilyName, Name FROM ClubA

INTERSECT

SELECT LastName, FirstName FROM ClubB

As with the union operator, the two sets of rows must be union compatible; that is, they 

must have the same number of columns, and the corresponding columns must have the 

same domains. This may mean projecting the appropriate columns from the base tables, 

in the same way as described in the “Selecting the Appropriate Columns” section earlier 

in this chapter. It makes no difference which of the tables we mention first in the query, as 

the intersection will be the same regardless of the order.

Uses of Intersection

A common use of the intersection operation is the one shown in Figure 7-9: finding common 

rows in two tables with similar information. Another very common use of intersection is 
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answering questions that include the word “both.” A typical example is “Which members 

have entered both tournaments 25 and 36?” The Entry table is reproduced in Figure 7-10.

Figure 7-10. Entry table

We can retrieve the member IDs for each tournament (by selecting the appropriate rows 

and retaining just the IDs), and then taking the intersection, as illustrated in Figure 7-11. As 

with a union, the result of the intersection operation just returns unique rows. 

Figure 7-11. Using intersection to find members entered in both tournaments 25 and 36
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The complete algebra expression and the equivalent SQL are shown in Listings 7-13 

and 7-14.

Listing 7-13. Algebra to Retrieve IDs of Members Entered in Both Tournaments 25 and 36

Listing 7-14. SQL to Retrieve IDs of Members Entered in Both Tournaments 25 and 36

SELECT MemberID FROM Entry WHERE TourID = 25

INTERSECT

SELECT MemberID FROM Entry WHERE TourID = 36

Suppose we now want to find the names of the members. From an algebra point of 

view, we could take the result of the intersection and join it with the Member table to get the 

names, as shown in Figure 7-12.

Figure 7-12. Joining the intersection with the Member table to find the names

I always feel I should be able to just take the SQL in Listing 7-14 and join the result with 

the Member table, as shown in Listing 7-15. However, standard SQL doesn’t like having a 

nested query as part of the join.

)) 
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Listing 7-15. SQL to Retrieve Names by Joining the Member Table to Intersection (Doesn’t Work)

SELECT LastName, FirstName

FROM Member m INNER JOIN 

     (SELECT e1.MemberID FROM Entry e1 WHERE e1.TourID = 25

      INTERSECT

      SELECT e2.MemberID FROM Entry e2 WHERE e2.TourID = 36)

ON m.MemberID = e1.MemberID

However, a very tiny change makes this work. Most implementations of SQL have the 

idea of a derived table. This essentially takes the subquery and thinks of it as a new, virtual 

table. All we need to do is give it a name, or alias. The name is placed just after the closing 

parenthesis of the subquery. In Listing 7-16, I’ve given the virtual table produced by the 

subquery the alias NewTable. You need to use the alias in the join condition.

Listing 7-16. Giving the Subquery an Alias, for a Derived Table (Does Work!) 

SELECT LastName, FirstName

FROM Member m INNER JOIN 

     (SELECT e1.MemberID FROM Entry e1 WHERE e1.TourID = 25

      INTERSECT

      SELECT e2.MemberID FROM Entry e2 WHERE e2.TourID = 36)NewTable

ON m.MemberID = NewTable.MemberID

Another way to retrieve the names is to use a nested query, as in Listing 7-17. Here, the 

inner query retrieves the IDs that are in the intersection, and the outer query finds the 

corresponding names from the Member table.

Listing 7-17. Using a Nested Query to Find Names Associated with the Intersection 

SELECT LastName, FirstName

FROM Member

WHERE MemberID IN

    (SELECT MemberID FROM Entry WHERE TourID = 25

     INTERSECT

     SELECT MemberID FROM Entry WHERE TourID = 36)

The Importance of Projecting Appropriate Columns

You must be very careful to think about which columns you include in the tables you are 

using in an intersect operation. Figure 7-13 shows what happens if we include all the columns 

as in Listing 7-18, instead of just projecting the MemberIDs.
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Listing 7-18. This Intersection Will Not Return Anything

SELECT * FROM Entry WHERE TourID = 25

INTERSECT

SELECT * FROM Entry WHERE TourID = 36

Figure 7-13. With all the columns projected, no rows appear in both tables.

With all the columns projected, we get an empty set as the result of the intersection. 

Because of the WHERE clause producing each of the tables, all the values for TourID are 25 

in the first table, and all the values for TourID are 36 in the second table. There will never 

be any rows that are common to both tables. In the previous example, Listing 7-14 and 

Figure 7-11, the columns with the tournament ID and year had been removed before the 

intersection.

Projecting different columns can provide answers to different questions. Take a look at 

Listing 7-19 and Figure 7-14. What is the intersection finding in this case?

Listing 7-19. What Will the Intersection Return with These Columns Projected?

SELECT MemberID, Year FROM Entry WHERE TourID = 25

INTERSECT

SELECT MemberID, Year FROM Entry WHERE TourID = 36

Figure 7-14. What does the intersection mean?

In Figure 7-14, we are finding all the members who entered tournaments 25 and 36 in 

the same year. This is why there is no entry for member 415 in the intersection: he entered 

tournament 25 in 2004, and tournament 36 in 2005 and 2006. Although his member ID 

=

SELECT*
FROM Entry
WHERE TourID=25;

SELECT*
FROM Entry
WHERE TourID=36

The intersection is empty

=

SELECT MemberID, Year
FROM Entry
WHERE TourID=25;

SELECT MemberID, Year
FROM Entry
WHERE TourID=36

What does the 
intersection mean?
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appears in the two contributing tables, the corresponding rows are for different years. 

There is no row for member 415 that is the same in both tables.

As you can see, the choice of columns that are projected for the contributing tables is 

fundamental to what will appear in the intersection. It means there are many different 

questions that can be answered very elegantly, but it also means that you can easily get 

incorrect answers if you don’t think the query through carefully.

Managing Without the INTERSECT Keyword

Not all implementations of SQL support intersection explicitly. However, we have other 

ways to perform the queries involving “both.” In Chapter 5, you saw how to do these queries 

using relational calculus. To recap, we imagine we have two fingers traversing each row of the 

Entry table, as in Figure 7-15. To find members who have entered both tournaments 25 and 

36, we need to find two rows with the same MemberID: one with TourID = 25 and one with 

TourID = 36.

Figure 7-15. Picturing the relational calculus method of finding members who have entered 

both tournaments 25 and 36

The SQL expression equivalent to Listing 7-14 is shown in Listing 7-20.

Listing 7-20. Finding Members Who Have Entered Both Tournaments 25 and 36 Without the 

INTERSECT Keyword

SELECT DISTINCT e1.MemberID

FROM Entry e1, Entry e2 

WHERE e1.MemberID=e2.MemberID 

AND e1.TourID=25 AND e2.TourID=36

e1
e2
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Listing 7-21 shows the equivalent of Listing 7-12 to find the names of people who are 

members of both ClubA and ClubB. We need to explicitly compare each column that we 

want to be the same in the two contributing tables.

Listing 7-21. Finding People in Both ClubA and ClubB Without the INTERSECT Keyword

SELECT DISTINCT a.MemberID

FROM ClubA a, ClubB b 

WHERE a.FamilyName=b.LastName 

AND a.Name=b.FirstName

Difference
Taking the difference between two tables finds those rows that are in the first but not the 

second and vice versa. For our two tiny clubs, I have reproduced the results of the differ-

ence operator in Figure 7-16.

Figure 7-16. The difference operator finds rows in one table but not the other.

The keyword in standard SQL for the difference operator is EXCEPT. Oracle differs from the 

ISO SQL standard, and from most other database systems, in its use of the keyword MINUS, 

rather than EXCEPT. 

Unlike with the union and intersection operators, the order of the tables is important for 

the difference operator; the results for ClubA-ClubB are different from those for ClubB-ClubA

(as shown in Figure 7-16). Listing 7-22 shows the SQL for finding those people in the ClubA

table but not in the ClubB table.

ClubB – ClubAClubA – ClubB



124 CH AP T E R  7  ■  SE T  O P E R A T I ON S

Listing 7-22. Finding the Names That Are in ClubA But Not ClubB

SELECT FamilyName, Name FROM ClubA

EXCEPT

SELECT LastName, FirstName FROM ClubB

Uses of Difference

Whenever you have a query that has the word “not,” you should consider the possibility 

that the difference operator will be useful. For example, how do we find members who 

have not entered tournament 25? Recall from Chapter 5 why the query in Listing 7-23 does 

not give us the correct rows from the Entry table.

Listing 7-23. Members Who Have Not Entered Tournament 25 (Incorrect)

SELECT MemberID FROM Entry

WHERE TourID <> 25

Listing 7-23 selects all the rows in the Entry table that are not for tournament 25. Looking 

at Figure 7-15, we can see that the query would return the row marked e2 for member 228 

entering tournament 36. However, in the row above, we see that member 228 has also 

entered tournament 25. This is not what we might naively have expected from Listing 7-23 

(before reading Chapter 5, of course!). What we need is a list of all members, a list of all the 

members entering tournament 25, and then to take the difference between them, as in 

Figure 7-17. 

The set of rows on the left in Figure 7-17—all member IDs—is retrieved by projecting 

the MemberID column from the Member table. The rows in the middle of Figure 7-17—IDs of 

all members entering tournament 25—are found by selecting the rows from the Entry table 

for tournament 25 and then projecting just the MemberID column. We then need the differ-

ence between these two sets of rows to find the IDs of members who have not entered 

tournament 25.

The complete algebra and SQL expressions to retrieve the IDs of members who have 

not entered tournament 25 are in Listings 7-24 and 7-25.

Listing 7-24. Algebra to Retrieve IDs of Members Who Have Not Entered Tournament 25

Listing 7-25. SQL to Retrieve IDs of Members Who Have Not Entered Tournament 25

SELECT MemberID FROM Member

EXCEPT

SELECT MemberID FROM Entry WHERE TourID = 25

)



C HA P TE R  7  ■  S E T  O PE R AT IO N S 125

Figure 7-17. Using the difference operator to find members who have not entered tournament 25

As with intersection and union operations, it is important that we project the appro-

priate columns before we use the difference operator. In Figure 7-17, we have retrieved 

the IDs from the Member and Entry tables. If we want to include the names of the members, 

we can use one of the methods explained in the “Uses of Intersection” section earlier in 

this chapter. However, in this difference example, we already had the names of the members 

in the Member table before we removed them to get the set of rows on the left side of Figure 

7-17. It seems a bit perverse to remove the names and then put them back later. What is 

important is that the two sets of rows involved in the difference are union compatible; 

that is, the corresponding columns must have the same domains. Either both sets have 

just IDs or both sets have IDs and names. In the operation on the left side of Figure 7-17, 

we took the first option and removed the names from Member. We could have left the names in 

the Member table and added the names to the rows in the middle of Figure 7-17 by joining 

the Entry and Member tables, as shown in Figure 7-18. We can then take the difference 

between these two sets of rows.

A
IDs of all members

B
IDs of members entering 

tournament 25

– =

A – B
IDs of members who have not 

entered tournament 25
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Figure 7-18. Including names of members in both sets of rows before taking the difference

The SQL equivalent of the operations shown in Figure 7-18 is given in Listing 7-26.

Listing 7-26. Including the Names Before Taking the Difference

SELECT MemberID, LastName, FirstName FROM Member

EXCEPT

SELECT m.MemberID, m.LastName, m.FirstName 

FROM Entry e inner join Member m on e.MemberID = m.MemberID

WHERE TourID = 25

Another use for the difference operation is in checking or validating data from different 

sources. By using the difference operation, and with appropriate projecting of columns, 

you can check if any instances have been added or deleted during translation. 

Managing Without the EXCEPT Keyword

Not all versions of SQL support the EXCEPT (or MINUS) keyword. As always, there is 

usually another way to formulate a query. In Chapter 4, we looked at relational calculus 

ways to answer queries to do the equivalent of the difference operation. Listing 7-27 

a) IDs and names from Member

MemberID,LastName,FirstNameMember

b) Entry table first joined with Member table to include
 names of members entering tournament 25

MemberID,LastName,FirstName TourID=25
(Member MemberID=MemberIDEntry)
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shows how we can use the NOT EXISTS keyword to find members who have not entered 

tournament 25. It essentially says this:

Write out the names of each member from the Member table where there does not
exist a row in the Entry table for that member (i.e., with the same MemberID) for
tournament 25.

Listing 7-27. SQL to Find Members Who Have Not Entered Tournament 25 (Without 

Using EXCEPT)

SELECT m.LastName, m.FirstName 

FROM Member m

WHERE NOT EXISTS 

    (SELECT * FROM Entry e 

     WHERE e.MemberID = m.MemberID

     AND e.TourID = 25)

Which type of query should you use: the ones based on algebra with the keyword EXCEPT 

or the ones based on calculus with the keywords NOT EXISTS or NOT IN? Usually, I say it 

doesn’t really matter, as your database engine will probably be smart enough to recognize 

them as being the same. However, the version of SQL Server I am using at the moment (2005) 

performs the calculus-based queries that return the names (as in Listing 7-27) much more 

efficiently than corresponding algebra-based ones using EXCEPT (as in Listing 7-26). You 

have to ask yourself whether you care! Queries on small databases are usually so quick 

that it really doesn’t matter if they run a bit slower. However, if you have a lot of data, then 

everything changes. The efficiency of queries can become extremely important, and in 

that case, you will need to also consider other aspects of your database design, such as 

indexes. I’ll talk a little more about this in Chapter 9.

Division
The last set operator we will look at in this chapter is division. Division is useful for queries 

that involve the word “all” or “every.” An example is “Which members have entered every

tournament?” Standard SQL doesn’t have a keyword for the divide operation, but you can 

construct alternative statements to carry out queries involving “all” or “every.” Here, we 

will look at how the division operation is defined and how to use it to construct algebraic 

queries. In Chapter 8, we’ll look at aggregates, and I’ll show you what I think is the simplest 

way of writing an SQL equivalent of the division operator.

The easiest way to understand the division operation is with an example. If we want to 

know which members have entered every tournament, we need two bits of information. 

First, we need information about the members and the tournaments they have entered, 

which we can get from the Entry table. We also need a list of all the tournaments, which 
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needs to come from the Tournament table, as not all tournaments may be represented in 

the Entry table. 

In Figure 7-19, you can see how division works. I’ve projected just the MemberID and 

TourID columns from the Entry table, and the TourID column from the Tournament table. 

It is important which columns you project, and I’ll come back to that in a moment.

Figure 7-19. Using division to find members who have entered all tournaments

The division has found those MemberID values in the table on the left-hand side of the 

operator (the far left in Figure 7-19) that has a row for each TourID in the table on the right-

hand side of the operator (the middle of Figure 7-19). Member 415 can be found paired 

with each of the five tournaments in the Entry table, and so appears in the result of the 

division. Member 228 does not appear in the result because there are no rows in the Entry

table with 228 paired with 38 or 40. The algebra expression is shown in Listing 7-28.

Listing 7-28. Algebra for Finding Members Who Have Entered All Tournaments

As a small aside, many people wonder why this operation is called division, as it doesn’t 

seem to relate particularly well to something like 4  2. Division is the inverse (or undoing) 

of multiplication in normal arithmetic. In relational algebra, division is like the inverse of 

a)
MemberID,TourID (Entry)

b)
TourID (Tournament)

c)
Result of division

=
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the Cartesian product. If you think of taking the Cartesian product of the two tables in the 

middle and far right of Figure 7-19, you will get a table with the same columns (but not 

rows), as on the far left of Figure 7-19. 

I like to think of setting up the division operation like this:

• Decide which attribute I want to find out about. Let’s call this “Answer.” In this case, 

I want to find MemberIDs, so our “Answer” attribute is MemberID.

• On the right-hand side of the division operator, the attribute(s) in the table should 

be the thing I want to check against, Let’s call this attribute “Check.” In this case, 

the “Check” attribute is TourID. We can get all the values for TourID from the 

Tournament table.

• On the left-hand side of the division, I want a table containing those two sets of 

attributes “Answer” and “Check”; that is, the MemberID and the TourID (in this case, 

which members have entered which tournament from the Entry table). 

We can answer a number of questions by changing what is on the right-hand side of the 

division operator. For example, if we wanted to know who had entered all the Open tour-

naments, we would replace the table in the middle of Figure 7-19 with a list that selected 

just the rows for Open tournaments before projecting the tournament IDs. The algebra is 

shown in Listing 7-29.

Listing 7-29. Algebra for Finding Members Who Have Entered All Open Tournaments

Projecting Appropriate Columns

As with intersection and difference operations, projecting different columns in division 

operations will give you answers to different questions. Once again, an example is the 

easiest way to understand this. In Figure 7-20, I have included an extra column from the 

Entry table. Can you understand what this query is finding?

The division is looking for a set of “Answer” attributes in the left-hand table that are 

paired with every attribute from the “Check” table. In this case, the operation looks for a 

pair MemberID and Year in the left-hand table that appears with each of the tournaments. 

There is no such pair. The pair 415, 2006 nearly makes it into the answer, but we are missing a 

row where it is associated with tournament 25. This division example is finding those 

members who have entered all tournaments in the same year.

MemberID,TourID(Entry) ÷ TourID TourType='Open'(Tournament) 
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Figure 7-20. What is the division operation finding?

SQL for Division

There is no algebra operator for division in standard SQL. In Chapter 8, I’ll describe a 

reasonably straightforward way to do the equivalent. In the meantime, we’ll look at a 

calculus expression. This can be a bit hard to follow, so you may want to skip this section 

and wait for the next chapter. For the brave, if we want to find the names of members who 

have entered every tournament, we are saying something like this (take your time):

Write out the value of m.LastName, m.FirstName from rows (m) in the Member table
where for every row (t) in the Tournament table there exists a row (e) in the Entry
table with e.MemberID = m.MemberID and e.TourID = t.TourID.

The equivalent expression in calculus notation is shown in Listing 7-30. The symbol 

stands for “there exists” (as in Chapter 4), and the new symbol  means “for every.”

a)
MemberID,TourID,Year (Entry)

b)
TourID (Tournament)

c)
Result of division

=
“Answer”

“Check”

“Answer” “Check”
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Listing 7-30. Calculus Expression to Find Members Who Have Entered Every Tournament

{ m.LastName, m.FirstName | Member (m) AND

(t) Tournament(t)

( (e) Entry(e) AND e.MemberID = m.MemberID AND e.TourID = t.TourID) }

Chapter 4 showed that SQL has an EXISTS keyword that corresponds to . There is no 

similar word in SQL to represent the  in Listing 7-30. However, it is possible to rephrase 

statements containing “every.” The phrase “every tournament has a corresponding row in 

the Entry table” is the same as “there is no tournament without a corresponding row in 

the Entry table.” (I did say this could be a bit hard on the brain.) We can use this to rephrase 

our description of the values we want to retrieve:

Write out the value of m.LastName, m.FirstName from rows (m) in the Member table
where for every row there does not exist a row(t) in the Tournament table there exists
for which there does not exist a row (e) in the Entry table with e.MemberID =
m.MemberID and e.TourID = t.TourID.

The equivalent expression in calculus notation for this alternative is shown in Listing 7-31.

Listing 7-31. Alternative Calculus Expression to Find Members Who Have Entered Every 

Tournament

{m.LastName, m.FirstName | Member (m) AND

NOT (t) Tournament(t)

(NOT (e)  Entry(e) AND e.MemberID = m.MemberID AND e.TourID = t.TourID) }

Now that we have removed the , we can transcribe this into SQL, as in Listing 7-32. 

I’ve indented the different bits to make it easier to read. The essential structure of the 

query is “return all the members where there is no tournament for which there is not a 

corresponding entry.”

Listing 7-32. SQL to Find the Names of Members Who Have Entered Every Tournament

SELECT m.LastName, m.FirstName FROM Member m

WHERE NOT EXISTS

     (

      SELECT * FROM Tournament t

      WHERE NOT EXISTS

            (

             SELECT * FROM Entry e

             WHERE e.MemberID = m.MemberID AND e.TourID = t.TourID

            )

      )
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The double negatives can be a bit daunting, but as I’ve said, I promise a conceptually 

easier method in the next chapter.

Summary
Because tables in a relational database have unique rows (if they are properly keyed!), 

they can be treated like mathematical sets. This allows us to use the set operations union, 

intersection, difference, and division.

Union, intersection, and difference are operations that act between union-compatible 

tables. This means the table on each side of the operator must have the same number of 

columns, and the columns must have the same domains (commonly interpreted as the 

same types). You can get union-compatible tables by sensibly projecting columns.

SQL has keywords to represent union, intersection, and difference, although not every 

implementation supports the keywords for all of these operations. If your SQL product 

does not support keywords for intersection or difference, you can find other ways to express 

the query. You should formulate your queries in the way you find most natural. Where you 

have very large amounts of data and speed is important, you may need to investigate the 

efficiencies of the different ways of formulating some queries. 

Table 7-1 summarizes union, intersection, and difference. A and B are two union-

compatible tables with (for simplicity) just one column called attribute.

The division operation helps with queries with the word “every” or “all.” Current versions 

of SQL do not support division directly, but there are ways to formulate the queries.

Table 7-1. Basic Set Operations and Their SQL Representation

Operator Description SQL Alternative

Union A  B finds all the 
rows that are in ei-
ther table A or table B

SELECT attribute FROM A
UNION
SELECT attribute FROM B

Intersection A  B finds all rows 
that are in both table A
and table B

SELECT attribute FROM A
INTERSECT
SELECT attribute FROM B

SELECT A.attribute
FROM A
WHERE EXISTS
(SELECT B.attribute 
FROM B
WHERE A.attribute = 
B.attribute)

Difference A - B finds all rows that 
are in table A and not in 
table B

SELECT attribute FROM A
EXCEPT
SELECT attribute FROM B

SELECT A.attribute
FROM A
WHERE NOT EXISTS
(SELECT B.attribute 
FROM B
WHERE A.attribute = 
B.attribute)
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Aggregate Operations

SQL has many functions for manipulating numbers and text. In this chapter, we will 

look at some of the functions for summarizing data—for example, to count all the senior 

members in the club—and how to make the best use of them. We will also explore how to 

group data before doing your aggregates or summaries.

Simple Aggregates
Simple aggregates include averages, totals, and counts. These are straightforward ideas, 

but as always, you need to be sure you understand how they work when things like Nulls 

and duplicates are involved.

The COUNT Function

In its simplest manifestation, the COUNT function calculates the number of rows being 

returned from a query. To do this, use the expression SELECT COUNT(*). Listings 8-1, 8-2, 

and 8-3 show some examples. The AS phrase—AS NumMembers and AS NumWomen in Listings 8-1 

and 8-2, for example—formats the output to include that name as the column header. 

This phrase can be omitted, as in Listing 8-3.

Listing 8-1. Return the Number of Members in the Club

SELECT COUNT(*) AS NumMembers

FROM Member 

Listing 8-2. Return the Number of Women in the Club

SELECT COUNT(*) AS NumWomen

FROM Member

WHERE Gender = 'F'
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Listing 8-3. Return the Number of Members Who Are Not Women

SELECT COUNT(*) 

FROM Member

WHERE Gender <> 'F'

All is well and good. But we need to be careful. In Chapter 2, we looked at how WHERE 

conditions operate when we make comparisons with a Null (or empty) value. In a WHERE 

clause, if the value we are comparing is a Null, then the answer will always be false. Therefore, 

if there is a row in our table with a Null value in the Gender column, it won’t be included 

in either of the queries in Listings 8-2 and 8-3. That means that our counts of members 

who have Gender = 'F' plus the count of members who have Gender <> 'F' will not add 

up to the count of all members. 

We can explicitly find how many of the rows do not have a value for Gender with the 

query in Listing 8-4. Queries like the one in Listing 8-4 can be very useful for checking the 

validity of your data before doing any queries involving counts or other statistics.

Listing 8-4. Return the Number of Members with No Value for Gender

SELECT COUNT(*) 

FROM Member

WHERE Gender IS NULL

The COUNT function can also return the number of values in a particular column of a 

table or query. Let’s look at a few of the columns in the Member table, as shown in Figure 8-1.

Say we want to find the number of members who have a coach. We have two options. 

One way is to formulate a query to return just those members who do not have a Null 

value for Coach and count those, as in Listing 8-5.

Listing 8-5. Return the Number of Members Who Have a Coach (One Method)

SELECT COUNT(*)

FROM Member

WHERE Coach IS NOT NULL

The other option is to ask the COUNT function to specifically count the number of 

values in the Coach column, using COUNT(Coach). Listing 8-6 will return the same result as 

Listing 8-5. 

Listing 8-6. Return the Number of Members Who Have a Coach (Another Method)

SELECT COUNT(Coach)

FROM Member
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Figure 8-1. Some columns of the Member table

So if we just want to find the number of rows returned from a query (or a whole table), we 

use SELECT COUNT(*). If we want to find the number of rows that have a value in a particular 

column, we use SELECT COUNT(<Column_Name>). The COUNT(*) and COUNT(<Column_Name>)

options allow us to be specific about how we want Null values to be treated. But what about 

duplicate values? 

The values in the Coach column of the Member table (Figure 8-1) are duplicated. There 

are only two distinct values (153 and 235). We therefore have two quite different questions 

that can be answered by counting: “How many people have coaches?” and “How many 

coaches are there?” The answer to the first question requires us to include all the values, 

as in Listing 8-6. The answer to the second question requires us to count just the distinct 

values. This can be done by including the DISTINCT keyword, as in Listing 8-7.

Listing 8-7. Return the Number of Different Coaches

SELECT COUNT(DISTINCT Coach)

FROM Member

While I am trying not to be product-specific in this book, I feel obliged (given how 

many copies of Access are out in the world) to point out that Access does not currently 

support COUNT(DISTINCT). However, you can get the equivalent result with a nested 

query, as in Listing 8-8.
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Listing 8-8. Alternative SQL for Access Where COUNT(DISTINCT) Is Not Supported

SELECT COUNT(*)

FROM (SELECT DISTINCT Coach FROM Member WHERE Coach IS NOT NULL)

You can also use the keyword ALL. This just reinforces that you want to count all 

values, rather than just distinct values. If you do not include either DISTINCT or ALL (as 

in Listing 8-6), all values are included by default. Similar sorts of queries can be applied 

to other columns. For example, we might want to know how many people have handi-

caps (COUNT (Handicap)), or we might want to know how many different handicaps are 

represented by our club members (COUNT (DISTINCT Handicap)).

With all these examples, we can include a WHERE clause as well, so we can find out 

how many women have coaches, how many junior members have handicaps, and so on. 

If no rows are returned by the query, the count will be 0.

The AVG Function

To find averages, we use the AVG function. The parameter for the function—that is, what 

goes in the parentheses (. . .)—is the expression you want to average. The expression must 

have a numeric value. The expression could be just the name of one of the numeric-valued 

columns or some function of a value, such as the length of a piece of text or the number of 

days between two dates. For example, we can find the average handicap for members of 

our club by averaging the values in the Handicap column, as in Listing 8-9.

Listing 8-9. Return the Average Handicap

SELECT AVG(Handicap)

FROM Member

As with the COUNT function, the AVG function includes only non-Null values for the 

handicap. We have 20 members in total, and 17 members with handicaps. If we sum all 

the handicaps, we get 287. The AVG function will take the total of the handicaps (287) and 

divide by the number of rows that have a value in the Handicap column (17). This is what 

we want. If we included the members without handicaps (by dividing by the total number 

of rows, 20), we would essentially be saying that these members have a handicap of 0 by 

default, which is not at all what we want in this case.

It is not always so obvious whether you want the Null values considered. For example, 

say we have another database with a table called Student and a column called TestScore.

If we enter test scores for students, and some of the students do not take the test, then we 

will have a Null in the TestScore column for that student. What do we mean by the average 

score? We could take the average over all the students (divide the total score by the count of all 

students), which means the students who missed the test are effectively being counted as 
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having scored 0. On the other hand, we might take the average of just those who participated 

in the test (divide by the number who took the test). People (especially academics!) will 

argue about such things. AVG(TestScore) will always give us just the average for those who 

took the test (which is what I personally think we want). If we want the average over all the 

students, including those with a Null mark (counted as 0), we can calculate the average by 

hand— totaling the marks (using the SUM function) and dividing by the full count. This 

computed average is shown in Listing 8-10.

Listing 8-10. Calculate an Average Where Null Values Are Counted As Zero

SELECT SUM(TestMark)/COUNT(*)

FROM Student

The query in Listing 8-10 is preferable to entering a mark of 0 for students who missed 

the test. If we do that, then we can no longer distinguish students who took the test and 

got 0 from students who missed the test (and even academics will agree this distinction is 

useful).

As with the COUNT function, the AVG function can also incorporate the keywords ALL 

and DISTINCT. Just be aware that ALL means all the non-Null values, as opposed to distinct 

non-Null values. It doesn’t mean take an average over all the rows (including those with 

Nulls), as in our discussion about test scores. I find it quite hard to come up with examples 

of when you would want to just average over distinct values—certainly none that apply to 

our club database.

How do the different types of the fields used as a parameter to the AVG function affect 

the result? The AVG function will accept only numeric types. We can’t attempt to average 

FirstName or JoinDate (although we could use functions to average the length of members’ 

first names or the number of days since their join date). What result do we expect to get 

when we average the handicaps of our members? The total of the handicaps is 287, and 

the number of people with handicaps is 17. If you divide these two numbers with a calcu-

lator, you get something like 16.88235. What will SQL give us? That depends. When I try 

this in Access 2007, I get 16.88235. In SQL Server 2005, I get 16. In SQL Server (and some 

other implementations of SQL), the average function returns the same type as the numbers 

being averaged. In this case, the Handicap column is an INT type, and so AVG(Handicap) in 

SQL Server returns an integer. It also does an integer division (which means the result is 

truncated to 16 rather than rounded to 17).

We do have control over how the result is calculated. If we want to get a noninteger result 

for our average, we can convert the Handicap value to a floating-point number before we do 

the average. To do this we can use the CONVERT function, described in Chapter 7.1 Another 

way to do this is just to multiply the handicap by 1.0: AVG(Handicap * 1.0). The SQL Server 

syntax using the CONVERT function is shown in Listing 8-11.

1. Different versions of SQL will have different functions to do this. In Oracle, you might consider using 
the CAST function.
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Listing 8-11. Convert Integers to Floating-Point Numbers to Get a Floating-Point Average

SELECT AVG(CONVERT(FLOAT,Handicap))

FROM Member

Listing 8-11 will give us a result with a lot of decimal places. We can also use a rounding 

function to specify the number of decimal places we would like included in the output. To 

round the result to two decimal places, as in 16.88, we would use the statement in Listing 8-12.

Listing 8-12. Round the Result to Two Decimal Places

SELECT ROUND ( AVG (CONVERT (FLOAT,Handicap) ), 2 )

FROM Member

In both Listings 8-11 and 8-12, we are averaging an expression, rather than just the values 

directly from the column of our table. We might want to do this for many reasons. Say in 

another database we have an Order table, which includes the columns Price and Quantity.

The net value of each order can be found by multiplying the Price and Quantity. If we want to 

find the average value for all our orders, we can put the expression Price * Quantity in the 

parentheses, as in Listing 8-13.

Listing 8-13. Find the Average Cost

SELECT AVG (Price * Quantity)

FROM Order

The examples so far have shown the aggregate functions applied to a whole table, but 

they can also be applied to the result of a query. For example, we could find the average 

handicap of women or of junior members by adding an appropriate WHERE clause, as in 

Listing 8-14.

Listing 8-14. Return the Average Handicap of Junior Members

SELECT AVG(Handicap)

FROM Member

WHERE MemberType = 'Junior'

If the WHERE clause returns no rows, or no rows with a value in Handicap, then the 

value returned by the average function is Null.

Other Aggregate Functions

Depending on your version of SQL, you might have dozens of other aggregate functions to 

explore. All versions will provide the common SQL aggregate functions SUM, MAX, and 

MIN, which are very straightforward to use. The arguments to the SUM function must be 
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a numeric expression (either a number column or some expression with a numeric result, 

such as Price * Quantity). The arguments to MAX and MIN can be numeric, text, or date 

types. For text types, the order is alphabetical. For dates, the order is chronological. For 

example, MIN(LastName) would return the first value of LastName alphabetically.

It is possible to combine several aggregate functions in one query. For example, Listing 

8-15 shows how to find the maximum, minimum, and average values for Handicap. The AS 

clause after each function is just saying, “Call the resulting column by this name.” Without 

such a label, it can be quite hard to remember which order you are expecting the 

numbers. Figure 8-2 shows some typical output.

Listing 8-15. Return the Maximum, Minimum, and Average Handicaps of Members

SELECT MAX(Handicap) AS maximum, MIN(Handicap) AS minimum, AVG(Handicap) AS average

FROM Member

Figure 8-2. Typical output from a query with several aggregate functions

Grouping
Say we want to know how many times a particular member has entered tournaments. We 

would need to look at the Entry table. For example, if we wanted to find how many times 

member 235 had entered tournaments, we could select all the rows in the Entry table for 

that member and count them. Listing 8-16 shows the SQL for doing this.

Listing 8-16. Find How Many Tournaments Member 235 Has Entered

SELECT COUNT(*) AS NumEntries

FROM Entry

WHERE MemberID = 235

If we wanted to find the number of entries for a different member, we would need to 

rewrite the statement in Listing 8-16 with a different WHERE clause. If we wanted to find 

the counts for all members, that would get very tedious. 

Grouping allows us to find the counts for all members using one SQL statement. The 

key phrase GROUP BY is used to do this. Look at the SQL in Listing 8-17.

Listing 8-17. Find How Many Tournaments Each Member Has Entered

SELECT COUNT(*) AS NumEntries

FROM Entry

GROUP BY MemberID
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The extra GROUP BY clause says, “Rather than just count all the rows in the Entry table, 

count all the subsets with the same MemberID.” Figure 8-3 depicts this. In Figure 8-3, the 

rows in the Entry table have been ordered by MemberID to make it clear what is happening.

Figure 8-3. Counting the rows in the Entry table grouped by MemberID

We can include the fields we are grouping by in the SELECT clause so we can see which 

counts belong to which entries. This is shown in Listing 8-18, and the output is shown in 

Figure 8-4.

Listing 8-18. Include the MemberID (the Grouping Field) in the Output

SELECT MemberID, COUNT(*) AS NumEntries

FROM Entry

GROUP BY MemberID

Entry table Count of rows grouped by MemberID
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Figure 8-4. Including the MemberID in the output

We might prefer to see the names of the members in the output of Listing 8-18 and 

Figure 8-4. In this case, we need to join the Entry table with the Member table first, and then 

group and count. Listing 8-19 shows the SQL, and Figure 8-5 shows the output. In Listing 8-19, 

you might wonder if you can group just by MemberID as we did in Listing 8-17. That would 

indeed give us the same counts. However, when you are using GROUP BY, you can include in 

the SELECT clause only the fields you are grouping by or the aggregates. If we want to see 

the names in the output, we need to include them in the fields we are grouping by.

Listing 8-19. Join Entry and Member Tables First to Show the Names of Members

SELECT m.MemberID, m.LastName, m.FirstName, COUNT(*) AS NumEntries

FROM Entry e INNER JOIN Member m on m.MemberID = e.MemberID

GROUP BY m.MemberID, m.LastName, m.FirstName

Figure 8-5. Joining the Entry and Member tables and grouping by the IDs and names

We can get a wealth of information from our tables using GROUP BY. Just considering 

the Entry table, we can find the number of entries for each member, as in the preceding 

examples, or we can find the number of entries for each tournament. If we would like to 

find the number of entries for each tournament, we want to imagine grouping all the rows 

with the same TourID together and then counting the rows in each set. Listing 8-20 and 

Figure 8-6 show how to find the number of entries in each tournament.
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Listing 8-20. Find the Number of Entries in Each Tournament

SELECT TourID, COUNT(*) AS NumEntries

FROM Entry

GROUP BY TourID

Figure 8-6. Counting the number of entries in each tournament

We do not need to count all the rows in the table. We might like to select a subset of 

the rows first. For example, we might just want to gather our statistics for the year 2006. 

Listing 8-21 shows the SQL to do this. Notice that the WHERE clause (which finds the 

subset of the rows we want to consider) must come before the GROUP BY clause.

Listing 8-21. Find the Number of Entries in Each Tournament for the Year 2006

SELECT TourID, COUNT(*) AS NumEntries

FROM Entry

WHERE Year = 2006

GROUP BY TourID

By adding more fields in the GROUP BY clause, we can get more detailed information. 

If we wanted to find the equivalent of Listing 8-21 for each year, we could remove the 

WHERE clause and group by both year and tournament ID. Listing 8-22 shows the SQL, 

and Figure 8-7 shows how the grouping on both fields works. In Figure 8-7, I’ve ordered 

the rows in the Entry table by TourID and Year so that it is easier to see the grouping.

Listing 8-22. Find the Number of Entries in Each Tournament for Each Year 

SELECT TourID, Year, COUNT(*) AS NumEntries

FROM Entry

GROUP BY TourID, Year

We can use grouping with the other aggregate functions. For example, if we wanted to see 

the average handicap for women and men, we could use a query like the one in Listing 8-23.

Listing 8-23. Find the Average Handicaps of Members Grouped by Gender

SELECT Gender, AVG(Handicap) AS AverageHandicap

FROM Member

GROUP BY Gender
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Figure 8-7. Grouping by TourID and Year

Filtering the Result of an Aggregate Query

Once we have calculated some aggregates for groups of rows, we may want to ask some 

questions about the results. For example, in Figure 8-7, we have found the number of 

entries in each tournament in each year. A likely question is “Which tournaments had 

three or more entries?” Looking at the result table in Figure 8-7, we want to select just 

those rows with the count greater or equal to 3. We can do this with the HAVING keyword. 

Take a look at Listing 8-24.

Listing 8-24. Find Tournaments with Three or More Entries

SELECT TourID, Year, COUNT(*) AS NumEntries

FROM Entry

GROUP BY TourID, Year

HAVING COUNT(*) >= 3

Entry table (reordered) Counting rows with the same TourID and Year
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The HAVING clause always comes after a GROUP BY clause. It selects rows matching 

some condition (in this case, COUNT(*) >= 3) from the result of the grouping. It is like having a 

WHERE clause that acts on the aggregated numbers. As a little aside, we must use COUNT(*) in 

the HAVING clause; we can’t use the alias NumEntries from the first line of the statement. 

This alias is just used at the end of the query to label the output column.

Let’s look at another example. Say we want to find those members who have entered 

four or more tournaments. First, construct a set of rows with the members and the counts 

of the tournaments they have entered, as in the first three lines of Listing 8-25. Then use 

the HAVING clause to select just those rows from the result with COUNT(*) >= 4.

Listing 8-25. Find Members Who Have Entered More Than Four Tournaments 

SELECT MemberID, COUNT(*) AS NumEntries

FROM Entry

GROUP BY MemberID

HAVING COUNT(*) >= 4

We have two opportunities to select a subset of rows in queries involving aggregates. If 

we take the subset before we do the aggregation, we use a WHERE clause. When we want 

to select just some rows after the aggregation, we use a HAVING clause. For example, let’s 

change the query in Listing 8-25 to find out which members have entered more than four 

Open tournaments. We need to do the following:

• Join the Entry table with the Tournament table.

• Take just the subset of entries for Open tournaments (with a WHERE clause).

• Group the entries for each member and count them.

• Take the resulting aggregate table and retrieve just those rows with a count greater 

than 4 (with a HAVING clause).

The process is depicted in Figure 8-8, and the complete SQL is in Listing 8-26.

Listing 8-26. Find Members Who Have Entered More Than Four Open Tournaments 

SELECT MemberID, COUNT(*) AS NumEntries

FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID

WHERE t.TourType = 'Open'

GROUP BY MemberID

HAVING COUNT(*) > 4
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We can also sort the output by the aggregate. If we wanted to see results in descending 

order of the number of tournaments entered, we could add an ORDER BY COUNT(*) DESC

clause at the end of Listing 8-26.

Figure 8-8. Finding members who have entered more than four Open tournaments

Using Aggregates to Perform Division Operations

In Chapter 7, we looked at the algebra operation division. To recap, division allows us to 

answer many questions containing the words “all” or “every.” For example, say we want 

to find those members who have entered every tournament. Figure 8-9 show how we can use 

division to do this. On the right side of the division operator, we have the set of things we are 

checking against (in this case, a list of all the TourID values projected from the Tournament

table). On the left side of the division operator is a table that connects members with the 

tournaments they have entered (in this case, we project the columns MemberID and TourID

from the Entry table). The results of the division are the MemberID values that appear with 

every tournament (in this case, just the one member with ID 415).

Currently, standard implementations of SQL do not have a keyword for the division 

operation, so we need to find other ways to express a query like that depicted in Figure 8-9. We 

looked at one way in Chapter 7. Here, we will look at another way that uses aggregates. 

The Tournament table lists five different tournaments. If we can find a member who has 

entered five different tournaments, then he must have entered all of them. We now have 

the ability to use aggregates and grouping to construct the equivalent of a division operation.

Group by MemberID and Count Retain just those rows
from result with

COUNT 4 (HAVING)

Join Entry and Tournament and 
select just those rows for 

Open tournaments (WHERE)
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Figure 8-9. Using division to find the members who have entered every tournament

We have already counted how many tournaments each member has entered (Listing 8-18). 

However, we want to count only the different tournaments entered by each member. We 

want to count the distinct TourIDs in the Entry table for each member. Listing 8-27 shows 

how to do that, and the result is in Figure 8-10.

Listing 8-27. Count the Distinct Tournaments Entered by Each Member 

SELECT MemberID, COUNT(DISTINCT TourID) AS NumTours

FROM Entry e 

GROUP BY MemberID

Figure 8-10. Finding the number of distinct tournaments entered by each member

From the resulting table in Figure 8-10, we now want just those rows where the count 

(NumTours) is equal to the number of distinct tournaments, which is 5 in this case. Listing 8-28 

shows how the HAVING clause can be used to find those members who have entered five 

a)
MemberID,TourID (Entry)

b)
TourID (Tournament)

c)
Result of division

=
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different tournaments, and Listing 8-29 shows the more general statement that replaces 5

with an expression to find the number of distinct tournaments directly.

Listing 8-28. Find Members Who Have Entered Five Different Tournaments 

SELECT MemberID

FROM Entry e 

GROUP BY MemberID

HAVING COUNT(DISTINCT TourID) = 5

Listing 8-29. Find Members Who Have Entered All the Different Tournaments in the 

Tournament Table

SELECT MemberID

FROM Entry e 

GROUP BY MemberID

HAVING COUNT(DISTINCT TourID) = 

     (SELECT COUNT(DISTINCT TourID) FROM Tournament)

Listing 8-29 is equivalent to the algebra division operation as depicted in Figure 8-9. 

It returns the IDs of members who have entered every tournament. To summarize, we 

count the number of distinct tournaments each member has entered, and then using the 

HAVING clause, retain just those whose count equals the number of possible tournaments (a 

distinct count from the Tournament table). I find this method of doing a division conceptu-

ally more straightforward than the one I suggested in Chapter 7. However, both methods 

accomplish the same goal.

Nested Queries and Aggregates
We have already covered a little about nested queries and aggregates in Chapter 4. It is 

useful to revisit this idea here. In this chapter, we’ve looked at how to find averages, totals, 

counts, and so on. Now we can use these aggregate results in other queries. For example, 

we might want to find everyone with a handicap greater than the average handicap. We 

can do this as shown in Listing 8-30. The inner part of the query returns the average, and 

the outer part of the query compares the handicap of each member with that average.

Listing 8-30. Return Members with a Handicap Greater Than Average

SELECT * FROM Member

WHERE Handicap >

      (SELECT AVG (Handicap)

       FROM Member)
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Let’s try something else. What about finding members who have entered more than 

three tournaments? If your mind goes blank, you can revert to the calculus approach 

of picturing the tables and figuring out what the rows you want returned will look like. 

Figure 8-11 shows how I think of this query.

Figure 8-11. Which members have more than three entries in tournaments?

We can describe the members we want returned like this:

Find all the rows (m) from the Member table where if we count the number of rows (e)
from the Entry table for that member (m.MemberID = e.MemberID) the count is > 3.

This turns into SQL in a straightforward way, as shown in Listing 8-31.

Listing 8-31. Find Members Who Have Entered More Than Three Tournaments

SELECT * FROM Member m

WHERE

       (SELECT COUNT (*)

       FROM Entry e

       WHERE e.MemberID = m.MemberID) > 3

What about something a bit more complex? How do we find the average number of 

tournaments entered by members? Your first thought might be to use the AVG function, 

but what are we trying to average? We want to count the number of tournaments for each 

member and then average those counts.

We can use grouping, as described in the previous section, to find the numbers of tour-

naments entered by each member. The SQL is shown in Listing 8-32, and the result is in 

Figure 8-12. I have included an AS clause so we can refer to the column with the counts in it.

m
e
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Listing 8-32. Find the Number of Entries for Each Member

SELECT MemberID, COUNT (*) AS CountEntries FROM Entry 

GROUP BY MemberID

Figure 8-12. Finding the number of entries for each member

Now we want to find the average of the column CountEntries. As a first try, it seems 

reasonable to use the SQL statement in Listing 8-33. We put the grouped count (Listing 8-32) 

as the inner part of a nested query, and then attempt to find the average. However, many 

versions of SQL do not support a nested query in a FROM clause. Listing 8-33 works fine 

in Access 2007 but not in some other implementations of SQL.

Listing 8-33. Find the Average Number of Tournaments Entered by Members (Doesn’t 

Always Work)

SELECT AVG (CountEntries) FROM

       (SELECT MemberID, COUNT (*) AS CountEntries FROM Entry 

       GROUP BY MemberID)

We can use derived tables in this situation. We encountered derived tables in the previous 

chapter, when we wanted to join a table with the result of a union. We would like to consider 

SELECT MemberID, COUNT (*) AS CountEntries FROM Entry GROUP BY MemberID as a new 

table. We could create this as a separate view, but if we want to use it only in this context, 

we can use a derived table. We do this simply by adding a name for this virtual table after 

the parentheses. In Listing 8-34, I have called the derived table CountTable (for want of a 

better name). It appears in bold in the listing. 

Listing 8-34. Using a Derived Table to Find the Average of Counts

SELECT AVG (CountEntries) FROM 

       (SELECT MemberID, COUNT (*) AS CountEntries FROM Entry 

        GROUP BY MemberID) CountTable
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We consider the SELECT clause in the parentheses as if it were creating a temporary 

table called CountTable (but, in fact, no actual table is ever made). We can then quite 

happily find the average of the counts in our new virtual table. 

Summary
Aggregate functions provide us with the means to answer a huge range of questions about 

our data. Here is a summary of some of the main points in this chapter.

Regarding simple aggregate functions:

• Most versions of SQL will offer the simple aggregate functions MIN, MAX, COUNT, 

SUM, and AVG. 

• For COUNT, you often just want to count rows, which can be done by including an 

asterisk in the parentheses: COUNT(*).

• For COUNT and other aggregates, you can include a field name or some other 

numeric expression, such as AVG(Handicap).

Regarding Nulls and duplicates:

• Null values are not included when calculating aggregates. For example, AVG(Handicap)

is the sum of the handicaps divided by the number of rows that have a non-Null 

value for Handicap.COUNT(Handicap) will count only those rows with a non-Null value in 

the Handicap column.

• By default, all non-Null values are included in the aggregates. You can include the 

keyword DISTINCT to remove duplicates. For example, COUNT(DISTINCT Handicap)

will count the number of different values appearing in the Handicap column.

Regarding grouping:

• The key phrase GROUP BY can be used to collect rows together and then apply the 

aggregates to the groups. For example, we can find the number of tournaments 

each member has entered with SELECT MemberID, COUNT(*) FROM Entry GROUP BY 

MemberID.

• After you have grouped and performed an aggregate, you can select rows from the 

resulting table using the keyword HAVING. For example, we can find members who 

have entered three or more tournaments by adding the clause HAVING COUNT(*) >= 3

to the expression in the previous item.
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• Use WHERE to select a subset of rows before the grouping and aggregating. Use 

HAVING to select a subset of rows after the grouping and aggregating.

Regarding more complex aggregates:

• Use derived tables where you want to nest aggregates, such as to find the average 

of counts.

• Compare counts of rows to do the equivalent of relational division.
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Efficiency Considerations

You may not need to read this chapter! Most database management systems are very 

efficient, and if you have a modest amount of data, most of your queries will probably 

be carried out in the blink of an eye. Complicating your life to make those queries a little 

faster does not make a great deal of sense. On the other hand, if you have (or might have) 

vast amounts of data, and speed is absolutely critical, you will need more skill and experi-

ence than you are likely to get from reading one chapter in a beginners’ book. Having said 

that, you are likely to have people tell you that it matters how you express your queries or 

that you should be indexing your tables, so it is handy to have some idea about what is 

going on behind the scenes.

Throughout this book, I have emphasized that there are often many ways to phrase a 

query in SQL. The implementation of SQL you are using may not support some construc-

tions, so your choices may be limited. Even then, you usually have alternatives for most 

queries. Does it matter which one you use? One consideration is the transportability of 

your queries. For example, some implementations of SQL support the INTERSECT keyword, 

but many do not. If you are unsure where your query may be used, you might choose to 

avoid keywords and operations that are not widely supported (yet). However, typically, 

you will be writing queries for a specific database with a specific implementation of SQL. 

In that case, your main questions are “How will the different constructions of a query 

affect the performance?” and “Is there anything I can do to improve performance?”

In this chapter, we will take a brief look at what goes on when a query is performed, 

how to determine if the phrasing of the query matters, and how indexes might help with 

the efficiency of some queries.

Indexes
Queries involve finding particular rows in tables and combining or comparing them in 

different ways. Being able to find rows quickly is therefore important for the efficiency of 

your queries. Depending on the type of query, the criteria for finding the row will be different. 

Let’s just think about the Member table:
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• We might want to find a row with a particular MemberID to match with a row in the 

Entry table.

• We might want to find a row with a particular LastName because we are interested in 

a particular member.

• We might want rows with particular values in the Handicap column because we 

want to find all members that have a certain handicap. 

Indexes can help us access tables in different ways to speed up finding rows.

Types of Indexes

Let’s start by thinking about some simple queries on a single table such as the Member table, 

shown in Figure 9-1. Recall that in relational theory, a table (relation) is a set of rows, and 

so there is no prescribed order to the rows. 

Figure 9-1. Member table

If we want to select a particular row or rows in the Member table (such as the row for 

member 323 or rows for members with a handicap less than 10), the database software 

must scan through every row in the table to check if it meets the condition. Indexes can 

help make finding particular rows much more efficient.
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When we create a primary key on a table, most database systems will automatically 

create an index on the key field(s). This means that it will keep a list of every value in the 

key fields in order, so you can find the value you are looking for quickly. Imagine several 

thousand names in no particular order, and then think of them ordered as in a telephone 

book. The sorted list is clearly much more efficient when looking for a name. 

Indexes on primary keys are a special type called a unique index, in which each value 

can appear only once. This is how the database system ensures that primary key values 

are never duplicated in your tables.

Many large, full-featured database systems support two different types of indexes: 

clustered and nonclustered. (In Oracle, the equivalent of a clustered index is a feature 

called an index-organized table.) Smaller products may not support both; for example, 

Access has only nonclustered indexes.

Let’s think about an index to keep the values of the MemberID field in numerical order. 

You can think of a clustered index as keeping all the data for each row in the index, essen-

tially maintaining the table in order sorted by MemberID. This is a bit simplified, but it does 

as a start. A clustered index is like a telephone book or a dictionary. You find the entry you 

are looking for, and all the information you require is right there. A nonclustered index 

keeps just the values of the MemberID field in order, along with a pointer or reference to the 

full row. A nonclustered index is like the index in the back of a book. You can quickly search 

the index for the topic you want, and then you get a reference to a page that you must look 

up to find the rest of the information. Figure 9-2 shows the two types of indexes on MemberID

for the Member table.

Figure 9-2. Clustered and nonclustered indexes on MemberID

Clustered index on MemberID Nonclustered index on MemberID
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If you want to find all the information about Member 228, with the clustered index, you 

can quickly find the entry 228, which has the whole row there. With the nonclustered index, 

you can search for 228 in the index, and then follow the reference (the arrow in Figure 9-2) to 

find the rest of the information about the member. 

You can have only one clustered index on a table, because the set of rows can be main-

tained in only one order at a time. However, you can have several nonclustered indexes. 

Old hymnbooks are a good example. The actual hymns are in the book in just one order 

(clustered index), but there may be several (nonclustered) indexes in the back: composer, 

first line, name, and so on. 

Let’s look at the Entry table, shown in Figure 9-3. We might want to find out two things 

from this table: 

• Which tournaments has a particular member, such as 235, entered?

• Who has entered a particular tournament, such as tournament 40?

For the first question, we want to quickly find all the rows with MemberID = 235. For 

the second question, we want to quickly find all the records with TourID = 40. The two 

nonclustered indexes in Figure 9-3 can help speed up both these searches. 

Figure 9-3. Two nonclustered indexes on the Entry table

Index on
MemberID

Index on
TourID
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If we want to find all the entries for tournament 40, the system can quickly search the 

index on TourID to find the entries for 40. The index also contains a reference to the full 

row in the Entry table, so the system can quickly locate the rest of the information. Alter-

natively, if we want to find the tournaments entered by member 235, we can use the MemberID

index to quickly access the appropriate records for that member.

Listing 9-1 shows the SQL statements to create two indexes on the Entry table: one on 

MemberID and the other on TourID. The syntax requires that you give the index a name (I’ve 

called them idx_Member and idx_Tournament), specify which table the index is to be created on, 

and provide the field that is to be indexed.

Listing 9-1. Creating Two Indexes on the Entry Table

CREATE INDEX idx_Member ON Entry (MemberID)

CREATE INDEX idx_Tournament ON Entry (TourID)

Once you have created indexes, the database management system will use them if 

it decides the index will make certain queries more efficient. We’ll talk about this in the 

“Query Optimizer” section later in this chapter. 

The most usual way that you are likely to want to access a table is through a primary key 

field. The index on the primary key can be clustered or nonclustered. In SQL Server, it defaults 

to being a clustered index. The SQL Server syntax for manually creating a clustered index 

on the primary key fields of the Entry table is shown in Listing 9-2. 

Listing 9-2. Creating a Clustered Index on the Primary Key Fields of the Entry Table

CREATE CLUSTERED INDEX idx_PK ON Entry (MemberID, TourID, Year)

The index in Listing 9-2 is a compound index involving three fields. The index will contain 

all three values. They will be sorted first by the first value, MemberID. Where there are two 

or more entries for the same MemberID, they will be sorted by the value of TourID and then Year.

Indexes for Efficiently Ordering Output

If we wanted to get member information in alphabetical order by name, we would use a 

query with the ORDER BY clause, as in Listing 9-3.

Listing 9-3. Retrieving Member Information in Alphabetical Order

SELECT * 

FROM Member

ORDER BY LastName
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If the Member table did not have an index on the names, this would require the rows to 

be retrieved and then sorted. Will it help to provide an index on LastName (or better still, a 

compound index on LastName, FirstName)? Not necessarily.

If the name index is a clustered index, it will definitely help speed up the process, because 

all the information we are seeking is contained in the required order in the index. If it is a 

nonclustered index, we can find the names in the correct order, but then we need to follow 

the reference to the whole row to look up the rest of the information. The lookup operation 

can be quite costly, and often the database system will choose to scan the unsorted table 

and then sort the records later.

How does the database software know what to do and, more important, how do we 

know what it is going to do? We will come back to these questions in the “Query Optimizer” 

section later in this chapter.

Indexes and Joins

Very few queries involve just a single table, and one of the most common operations in a 

query is the join. Making joins efficient is certainly worthwhile. Joins involve comparing 

the values of fields in each of the tables involved in the join. While a join can be on any 

field, a very common situation is joining the foreign key in one table to the primary key in 

the table it is referencing.

Figure 9-4 shows the Entry table and some columns from the Member table. In the Entry

table, MemberID is a foreign key referring to the Member table, which means that any value 

in MemberID in the Entry table must already exist in the Member table. The data was split into 

these two separate tables to avoid the updating problems discussed in Chapter 1. However, 

many queries involving the Entry table will also require information from the Member table 

(for example, a member’s name), so we need to join the tables as shown in Listing 9-4. A 

similar join between the Entry and Tournament tables is also likely to be carried out often.

Listing 9-4. Joining the Entry and Member Tables

SELECT *

FROM Member m INNER JOIN Entry e 

ON m.MemberID = e.MemberID

How does a database management system carry out a join between the Entry and Member

tables? Well, it can take many approaches. You don’t need to specify which approach to take, 

as the query optimizer in your database software will choose the most efficient one, as 

discussed shortly. However, it is useful to have a bit of an idea of what may happen, so you can 

make some informed decisions about adding indexes.

One approach to joining tables is called nested loops. This means that you scan down 

the rows in one table, and for each row, you look through all the rows in the other table to 

find matches for the join condition. The nested-loop approach is depicted in Figure 9-5. 
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Figure 9-4. A join will often occur on the two MemberID fields in the Member and Entry 

tables.

Figure 9-5. Nested-loops approach to finding rows with matching MemberIDs

Part of Member table Part of Entry table

For each row in first table...

Find match in second table...
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Obviously, which table is in the outside loop will make a difference. If we start scanning 

the Entry table, we need to be able to quickly find the row with the matching MemberID in 

the Member table. If we start by choosing rows in the Member table, we need to quickly find 

the matching MemberID in the Entry table. Because there will always be an index on the 

primary key MemberID in the Member table, the first option will always be quite efficient. 

The picture in Figure 9-5 shows the outside loop being around the Member table. For 

each row, the database system will need to search for the matching row in the Entry (inner) 

table. If there is an index on the foreign key MemberID in the Entry table, this option will 

also be a possible choice. Your query optimizer software will do all the sums and figure out 

the best way.

Another approach to doing a join is to first sort both tables by the join field. It is then 

very easy to find matching rows. This is called a merge join and is shown in Figure 9-6. 

Figure 9-6. A merge-join approach first sorts each table by the field being compared.

Sorting each table as in Figure 9-6 is an expensive operation. However, if the tables are 

already sorted (they both have a clustered index on the join field MemberID), then this merging 

operation is very efficient.

What Should We Index?

We have two types of indexes, clustered and nonclustered, and as you saw in the previous 

section, it can make quite a difference which you use. Clustered indexes provide rapid 

access to all the information in a row via the field on which you have indexed. For this 

reason, you need very good reasons not to have the primary key as the clustered index on 

a table. 

First sort on matching field First sort on matching field

Then compare
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What about nonclustered indexes? You can have as many of those as you like. Appro-

priate indexes will certainly help with finding rows quickly, and therefore make many 

queries more efficient. There is a downside to having many indexes, however. 

If you have a lot of indexes, then every time you add, delete, or amend a row in a table, 

all the indexes must be updated. Database systems are very smart about how they manage 

indexes, but it still takes time. So while indexes can speed up retrieval, they may slow some 

maintenance operations. Indexes also take up room on your storage device, although this is 

not often a huge problem these days.

Most large database systems provide analysis tools that allow you to experiment with 

placing different indexes on your tables and estimate how the performance might be affected 

for various queries and maintenance processes. The only way to really see how the perfor-

mance will vary is to use these tools and try some experiments. 

Query Optimizer
In the previous sections, we looked at a couple ways the database system could carry out 

a join: with nested loops or with a sort and merge. Which one will occur? Fortunately, we 

don’t have to worry about this, as good relational database products have a query optimizer 

to figure out the most efficient way.

What Does the Query Optimizer Consider?

The query optimizer will take into account a number of things, such as which indexes are 

present, the number of rows in the tables, the length of the rows, and which fields are 

required in the output. An optimizer will look at all the possible steps for completing the 

task and assign time costs to each. It then comes up with the most efficient plan.

In the previous section, we looked at just a single join, but queries usually involve a 

number of steps. Consider finding the tournaments that member 235 has entered. This 

will require us to join the Entry and Member tables, to perform a select operation to find the 

rows for member 235, and then to project the required columns. In what order should we 

do the join and the select operations? Listing 9-5 shows two possibilities. 

Listing 9-5. Two Algebra Expressions to Find the Tournaments That Member 235 Has Entered

In the first of the two expressions in Listing 9-5, we first do the complete join of Entry

and Member (the innermost set of parentheses). This involves comparing all the rows from 
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each table. In the second expression, we first select the single row for member 235, and 

then join just that single row with the Entry table. Clearly, the second option involves less 

work looking up matching rows. Remember that algebra expressions tell us how to carry 

out the query, whereas calculus expressions describe what rows we want. The rows we 

want can be described like this:

Retrieve TourID and Year from rows (e) in the Entry table where there is a matching
row (m) in the Member table and m.MemberID = t.TourID and m.MemberID = 235.

The SQL equivalent to this calculus-like description is in Listing 9-6.

Listing 9-6. SQL to Find the Tournaments That Member 235 Has Entered

SELECT e.TourID, e.Year

FROM Entry e , Member m

WHERE e.MemberID = m.MemberID AND m.MemberID = 235

The SQL in Listing 9-6 is calculus-based and so gives no indication of what order to 

carry out the relevant operations. The query optimizer will sort out the best way. However, 

other equivalent SQL expressions will return the same result as returned by the SQL in 

Listing 9-6. Does it matter which we choose? It might. The answer depends on how smart 

your database product is. Most good relational databases provide tools that allow you to 

see the query plan your optimizer has chosen. 

Does the Way We Express the Query Matter?

As you’ve seen in this book, you often have many equivalent ways of expressing a query in 

SQL. Some are based on the relational calculus; others use explicit algebra operators such 

as inner join and intersect. Listings 9-7, 9-8, and 9-9 show three different ways to express 

the same simple join and select operations to find the tournaments entered by senior 

members.

Listing 9-7. A Join Expressed with a Calculus-like Expression

SELECT m.LastName, e.TourID

FROM Entry e, Member m

WHERE e.MemberID = m.MemberID AND m.MemberType = 'Senior'

Listing 9-8. A Join Expressed with an Inner Join Operation

SELECT m.LastName, e.TourID

FROM Entry e INNER JOIN Member m

ON e.MemberID = m.MemberID

WHERE m.MemberType = 'Senior'
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Listing 9-9. A Join Expressed with a Nested Query

SELECT m.LastName, e.TourID

FROM Entry e

WHERE e.MemberID IN

     (SELECT m.MemberID FROM Member m

      WHERE m.MemberType = 'Senior')

So does it make a difference which of these we use? The answer is not simple. It very much 

depends on the query optimizer in your database product. Most full-featured relational data-

base products have tools that allow you to make comparisons between different query plans.

Figure 9-7 shows some output from the query analyzer in SQL Server 2005. I’ve given it 

the three queries and asked to see its intended plan for each. It shows that each time the 

join is done with a nested loop, and it also shows the estimated relative costs. There is no 

way you could have predicted this result without using the analyzer or having a very detailed 

understanding of how the particular optimizer works in the current version of the product.

Figure 9-7. SQL Server query analyzer showing relative costs for three ways of expressing a 

join and select

In some cases, the way you express the query can make quite a difference. Consider a 

query to find members who have never entered tournament 25. Three different ways of 

expressing this query are shown in Listings 9-10, 9-11, and 9-12.

Relative costs almost identical
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Listing 9-10. Using NOT EXISTS

SELECT m.Lastname, m.FirstName

FROM Member m

WHERE NOT EXISTS

     (SELECT * FROM Entry e

      WHERE e.MemberID = m.MemberID

      AND e.TourID = 25)

Listing 9-11. Using a Join and Then a Difference Operator (EXCEPT)

SELECT LastName, FirstName FROM Member

EXCEPT

SELECT m.LastName, m.FirstName

FROM Entry e INNER JOIN Member m ON e.MemberID = m.MemberID

WHERE TourID = 25

Listing 9-12. Using a Nested Query and a Difference Operator

SELECT LastName FirstName FROM Member

WHERE MemberID IN

     (SELECT MemberID FROM Member

      EXCEPT

      SELECT MemberID

      FROM Entry

      WHERE TourID = 25)

Figure 9-8 shows the estimated plans for each of the three versions of the query. You can 

see that they are very different. The versions using the EXCEPT keyword are significantly 

slower. This is the first version of SQL Server to support the EXCEPT keyword, and I suspect 

that in future versions, the optimizer will change to make these queries more efficient. 

Before you get too bothered about differences in efficiency, you need to make sure that 

it actually matters to you. When you run these queries, each appears to be carried out in 

an instant. With bigger tables, the difference may become noticeable (or it may not). You 

can try to future-proof your queries for when your tables get bigger, but as the optimizers 

improve, the differences may well disappear. I’m inclined to not worry too much about 

the efficiency of different versions of queries unless it is absolutely crucial. And if it is 

absolutely crucial, get some expert advice for your situation!
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Figure 9-8. SQL Server query analyzer shows that how you express this query makes a 

significant difference to the efficiency.

You can also use query plan analysis tools to investigate the effect of adding indexes to 

your tables. Consider the query in Listing 9-13, which projects the LastName field from the 

Member table and then orders the names.

Listing 9-13. Selecting a Field from a Table

SELECT LastName FROM Member

ORDER BY LastName

What will be the impact of adding a nonclustered index on LastName to the Member

table? To illustrate the difference, I’ve used the SQL Server query analyzer to compare the 

query on two identical tables: one, renamed MemberIndex, with an index on LastName, and 

one without an index on that column. Figure 9-9 shows the result. As you can see, the index 

speeds up this query significantly. This is because all the last names are kept in order in 

the index.

Relative costs very different
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Figure 9-9. An index improves the query by retrieving just the fields in the index.

However, if we ask for extra fields to be retrieved by the query, as in Listing 9-14, the 

additional cost of having to look up the values of the other fields must be taken into account. 

Listing 9-14. Selecting All the Fields from a Table

SELECT * FROM Member

ORDER BY LastName

Figure 9-10 shows that the optimizer has decided that it is better to just retrieve whole 

records and then sort them.

Figure 9-10. The index is not used for retrieving all the fields.

Relative costs 
for indexed table
much lower

Optimizer does not use the
index for this query. The
presence of the index makes
no difference to the query
plan or cost.
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The two examples in Figures 9-9 and 9-10 illustrate that it is not sensible to try to guess 

what your optimizer will do. A good optimizer will take into account all manner of statistics 

about your tables before it arrives at its decision. You might think an index will help speed up 

a query, but you should check with some analysis tools. You also need to remember that 

indexes will affect different queries in different ways. Having a clustered index on LastName

would certainly make both the queries in Listings 9-13 and 9-14 more efficient, but might 

make queries involving a join between Member and Entry less efficient.

For most small databases, these deliberations are not necessary. Where you have very 

large tables and speed is critical, it becomes a job for an expert to determine which combi-

nations of indexes and other factors will make your database most efficient overall.

Summary
You can access the tables in a query to find the required rows in many different ways. The 

query optimizer in your database will check the different options and choose the approach 

it thinks is the most efficient. Optimizers vary in how good they are at doing this and are 

constantly being improved.

Here are two of the most obvious things that you can do to try to improve the efficiency 

of your queries:

• Check the efficiency of different ways of expressing queries.

• Add appropriate indexes.

Query optimizers are pretty clever! They can usually work out the most efficient query 

plan, regardless of how you express the query. But this is not always the case. The only way 

to tell is to use query analysis tools to check the different query plans. Be aware that as the 

optimizers improve, the plans might change with each new version of your database 

product, so you need to keep checking.

Adding appropriate indexes can often make quite significant improvements to some 

queries. Indexes are usually automatically added for primary key fields. Indexes on fields 

that you want to order by or use in a select condition can also be useful. It is always worth 

checking the usefulness of adding an index to foreign key fields, as these are often used in 

join conditions.

However, indexes come at a cost because they need to be updated every time a row in 

the table is added, deleted, or altered. This can slow some updating operations while speeding 

some retrieval operations. You need to decide how important the various efficiencies are 

for your particular situation. For small databases, you probably don’t need to worry about 

efficiency at all, but bear in mind that small databases have a habit of growing.
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C H A P T E R  1 0

How to Approach a Query

In the previous chapters, you have seen how to use relational algebra operations to 

combine tables and extract subsets of information. You’ve also seen how to express many 

different types of queries in terms of the relational calculus and how to translate these to 

SQL statements using a number of keywords and phrases.

However, when you are presented with a complicated, natural-language description of 

a query, it is not uncommon to find that your mind goes blank. You have a lot of ammuni-

tion at hand, but for a moment or two, you have no idea which weapons to choose.

Usually, it is just a matter of being confident and relaxing. Large, complicated queries 

can always be broken down into a series of smaller, simpler queries that can be combined 

later. This chapter describes how to do just that.

Understanding the Data
It may sound like stating the obvious, but you can’t retrieve information from a database 

without understanding where all the different bits of data are stored and how the relevant 

tables are interrelated. Most of the time, you will be querying a database designed by someone 

else, and probably maintained and altered over time by various people. You need to under-

stand their model. You also must be alert to the unfortunate reality that the database may 

have been badly designed.1 This might mean that you are not able to retrieve the required 

information accurately. We will consider this problem of working against bad design a bit 

more in Chapter 11.

Determine the Relationships Between Tables

The best way to get an overview of a database is to look at a schematic of the relationships 

between the tables. Most database management software provides a way of viewing the fields 

in the tables and the relationships between the tables. Figures 10-1 and 10-2 show the 

relationship diagrams for our club database as depicted by SQL Server and Microsoft Access.

1. See my design book, Beginning Database Design: From Novice to Professional (Apress, 2007).
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Figure 10-1. The database diagram from SQL Server

Figure 10-2. The relationship diagram from Microsoft Access

On the surface, the diagrams in Figures 10-1 and 10-2 look a bit different, but they are 

representing exactly the same database. The Access schematic in Figure 10-2 displays an 

additional copy of the Member and Team tables. The two copies of the Member table arise 

from the self relationship between members (that is, a member can coach other members). 

The additional copy of the Team table is because of the two relationships between Member

and Team: a member can be the manager of a team, and a member can belong to a team. 

These relationships are depicted in the SQL Server diagram in Figure 10-1 without needing to 

display the tables twice. The different diagrammatic representations are just a quirk of the 
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different management systems. Both schematics represent the same set of tables and 

relationships.

The lines in the two diagrams in Figures 10-1 and 10-2 represent the foreign keys that 

were set up when the tables were created. If your database management software does 

not have a useful way of depicting the relationships graphically, you can sketch your own 

diagram from the SQL statements that created the tables. For example, the statement for 

creating the Member table is shown in Listing 10-1. It contains two foreign key constraints.

Listing 10-1. SQL for Creating the Member Table

CREATE TABLE Member(

MemberID Int Primary Key,

LastName Char(20),

FirstName Char(20),

MemberType Char(20) Foreign Key References Type,

Phone Char(20),

Handicap Int,

JoinDate Datetime,

Coach Int Foreign Key References Member,

Team Char(20),

Gender Char(1))

Recall from Chapter 1 that this line of code:

MemberType Char(20) Foreign Key References Type 

means that the values in the MemberType field must exist in the primary key field in the Type

table; that is, there is a relationship between the Member table and the Type table. 

This line of code:

Coach Int Foreign Key References Member 

means that the values in the Coach field must already exist in the primary key field in the 

Member table; that is, there is a self relationship on the Member table.

You can see the resulting lines in the diagrams in Figures 10-1 and 10-2. You can investi-

gate all the foreign key statements in the SQL that created the tables in your database and 

create your own diagram, if necessary.

The Conceptual Model vs. the Implementation

One word of caution: there are two models you need to understand. First is the conceptual

data model that describes how the data for a particular problem is interrelated. A number 

of methods exist for representing a conceptual model, such as entity-relationship (ER) 

diagrams and Unified Modeling Language (UML) class diagrams. In addition to the 
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conceptual model is the real database that has been implemented. The conceptual model 

and actual implementation may be different!

The schematics that your database management software shows you depict the foreign 

keys that have actually been set up. However, the developer may not have implemented 

the foreign key constraint on the Coach field (for example) for many reasons. He may not 

have realized the constraint was necessary; he may not have known how to define it; or he 

may have decided to enforce the constraint that a coach must be an existing member some 

other way (with a trigger or via the interface). 

The CREATE statements and the relationship schematics show you what relationships 

have actually been implemented in the database. However, even if there is no foreign key 

constraint on the Coach field in the Member table, we still need to understand that members 

coach other members if we want to design reliable queries about coaching.

It is often a good idea to sketch a conceptual model, as in Figure 10-3. Refer back to 

Chapter 1 if you need to refresh your understanding of how to read the lines and numbers.

Figure 10-3. Conceptual model of the data

The conceptual model depicts how the various bits of data actually interrelate in the 

real world. The database diagrams show us which foreign keys have been implemented in 

the database to represent the relationships. The conceptual model in Figure 10-3 and the 

SQL Server diagram in Figure 10-1 are just about identical (because I designed the data-

base according to the model!). Real problems arise when the database has been designed 

badly (or not at all), and the implementation bears little resemblance to the reality.

If we had a set of tables as in Figure 10-1 but the developer had, for some reason, chosen 

not to set up the foreign keys, the two models would be much the same but with a few lines 

missing. In that case, we could still answer questions about the data reasonably effectively 

(although the data values may not be very accurate or consistent).
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In some cases, the actual database may not have much in common with the conceptual 

model. For example, if the database contained additional tables for coaches and managers or 

did not have a separate table for entries, the two models would look quite different. The 

likelihood of getting reliable information would be low. Chapter 11 looks at these kinds of 

problems, although short of a major redesign, there is not much you can do in many cases.

What Tables Are Involved?

Once you have an understanding of the tables in the database and how they are related, 

you can look at which tables you will need in order to extract the subset of data you require. 

Consider a query like “Find all the men who have entered a Leeston tournament.” This 

sentence contains a few key words. Nouns are often a clue to which tables or fields we are 

going to need. Verbs often help us find relationships. Let’s look at the nouns. “Tournament” 

is a big clue, and we have a Tournament table, so that is a start. The word “men” is another 

noun in the query description. We don’t have a Men table, but we do have a Member table.

It is fairly clear then that the Member and Tournament tables are going to play a part in our 

query. Now we need to get a feel for how these two tables are related. Figure 10-4 shows 

the part of the SQL Server database diagram containing these two tables. We see that that 

they are not directly related but are connected via the Entry table. That makes sense, 

because the verb “enter” is in our query description.

Figure 10-4. Part of the database diagram showing the Member and Tournament tables

So it looks like at least three tables will be involved in our query: Member, Tournament,

and Entry. We then use our understanding of the relational algebra to decide how these 

tables need to be combined. Do we need a join or a union, or some combination of these 

and other relational operators? We’ll look at ways to help decide on the appropriate 

operations in later sections in this chapter.
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Look at Some Data Values

Requests for information from a database are usually couched in rather informal and 

imprecise natural language. Even a simple request, such as “Find all the men who have 

entered a Leeston tournament,” has a few things we need to clarify. Having a look at the 

actual data in the tables can sometimes help.

Our query does not actually “find” the men, but returns some information about them. 

Looking at the data values in the table will help us decide what information might be helpful. 

Presumably, the questioner would like to see the names of the men. Do we need the IDs 

as well? We will need IDs if we want to distinguish two members with the same name.

It may not always be clear what some of the words in the question refer to. What is a 

Leeston tournament? Is Leeston the name of a tournament, a type of tournament, or a 

location? Looking at a few rows of the Tournament table (as shown later in Figure 10-5) can 

help us. We see that the TourName field has the value “Leeston” here and there. Sometimes 

it might not be so easy to determine what imprecise words in the query description refer 

to. It may be necessary to talk to the developer or users to get a better understanding of 

what information they are trying to retrieve.

How do we determine which members are men? Fortunately, the Member table has a 

Gender column, and it looks like we want “M” values. Is selecting rows with values of “M” 

going to be enough? Might there be some rows that have “m” or “male” as the values? 

We’ll look at how to deal with issues of inconsistent data in the next chapter. For now, let’s 

assume that men are denoted by “M” values.

For the simple query in this example, we now have a more precise description. It is 

something like “Retrieve the MemberID, LastName, and FirstName of the men (Gender = 'M')

who have entered the tournament where the value of TourName is Leeston.” 

If you are on the ball, you might think of some other particulars that need clearing up. 

It is often a good idea to ask why this information is required. Do we just want to find 

which men have ever been to Leeston, or do we want to know how many times our male 

club members have entered Leeston tournaments? These questions can have different 

answers, as you will see in the “Retain the Appropriate Columns” section coming up soon.

Big Picture Approach
My first attempt at a query is seldom elegant or complete. For a simple query like “Find all 

the men who have entered a Leeston tournament,” there are two ways I might tackle it, 

depending how my muses are working. One way is the big picture. I do this if I have a bit 

of an idea of how to combine the tables. I will cover the other way in the section “No Idea 

Where to Start?” which I use when I have no idea how to start!

In the big picture approach, I like to combine all the tables I’ll need and retain all the 

columns, so I can see what is happening. I usually find it easiest to have an SQL window of 
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some sort open, so I can try small queries to see if the intermediate results look promising 

for answering the overall question. 

Let’s look at the big picture approach to the query “Find all the men who have entered 

the Leeston tournament.” We decided we needed three tables: Member, Entry, and Tournament.

These tables are all connected by foreign keys, and this often suggests that joins will be 

useful. If it isn’t clear to you that a join is what is required for the query, then resort to the 

methods in the “No Idea Where to Start?” section later in this chapter.

Combine the Tables

Having established which tables are likely to be useful for the query, we need to combine 

them. We’ll talk about how to decide on the relevant operations for combining the tables 

in the “Spotting Key Words in Questions” section later in this chapter. For now, let’s assume 

that you think joins look promising for the query about men entering the Leeston tourna-

ment. You don’t have to do everything at once. Start slowly with some small queries to see 

how things shape up.

To carry out a join, we need to find the fields on which to join. Review Chapter 3 if you 

need to refresh your understanding of join-compatible fields. The Entry table is critical to 

this query, as it connects the Member and Tournament tables. The Entry table has a foreign 

key field TourID, which we can join with the primary key of the Tournament table. Do that 

much first. Listing 10-2 shows the SQL, and Figure 10-5 shows a few rows of the resulting 

virtual table.

Listing 10-2. Joining the Tournament and Entry Tables

SELECT * FROM

Tournament t INNER JOIN Entry e ON t.TourID=e.TourID

Figure 10-5. Part of the result of joining the Tournament and Entry tables
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The result shown in Figure 10-5 is certainly helpful. We can see the entries and the names 

of the corresponding tournaments. We can see from the first two rows that members 118 

and 228 have entered a Leeston tournament. Now we need to find out whether 118, 228, 

and other members, entering the tournament are men and find their names. We can get 

this additional information by joining the virtual table in Figure 10-5 to the Member table 

on the MemberID fields. Listing 10-3 shows the SQL, and Figure 10-6 shows the result. I 

haven’t included all the columns in Figure 10-6 because there are a lot of them. You will 

see shortly why I like to leave all the columns in as long as possible.

Listing 10-3. Joining the Tournament and Entry Tables and Then Joining the Member Table

SELECT * FROM

(Tournament t INNER JOIN Entry e ON t.TourID=e.TourID)

INNER JOIN Member m ON m.MemberID = e.MemberID

Figure 10-6. Part of the result of joining the Tournament, Entry, and Member tables 

(just some columns)

The virtual table resulting from Listing 10-3 has all the information we need to find the 

required data. The first two rows show that members 118 and 228 are women. The row for 

member 286 (circled) looks more promising. How do we amend the query to find the 

appropriate subset of rows and columns?

Find the Subset of Rows

To fix the query to obtain the subset of rows we need, first look at which rows we want to 

retain. We just want the subset of rows where the Gender field has the value “M” and the 

TourName field has the value “Leeston” as shown in Figure 10-6. This is a relational algebra 

select operation, similar to the operations described in Chapter 2. In SQL, a subset of rows 

is retrieved by using a WHERE clause with the appropriate condition. In Listing 10-4, we 

have added the WHERE clause.
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Listing 10-4. Retrieving the Rows for Men and Leeston Tournament

SELECT * FROM

(Entry e INNER JOIN Tournament t ON t.TourID=e.TourID)

INNER JOIN Member m ON m.MemberID = e.MemberID

WHERE m.Gender = 'M' AND t.TourName = 'Leeston'

Figure 10-7 shows just some of the columns from the result of the query in Listing 10-4. It 

has four rows: three for Robert Pollard and one for William Taylor. 

Figure 10-7. Men who have entered Leeston tournaments (just some columns)

Why do we have three rows for Robert Pollard? The rows are identical except for the 

value of the Year field. Robert has entered the Leeston tournament in three different years. 

We can see this quite clearly from Figure 10-7 because we have left the Year column in the 

output. Had we retained only the name columns, we might initially be a bit puzzled at 

having Robert Pollard repeated three times. What we do about the repetition of Robert 

Pollard depends on understanding the initial question a bit more clearly, as you will see in 

the next section.

Retain the Appropriate Columns

We have the appropriate subset of rows from our large join. Now we need to retain just the 

columns we require. This is not as simple as it first sounds. The three rows for Robert Pollard 

give us a bit of a clue that things may not be as straightforward as we might think. We have 

two possibilities:

• If we only want to know who has entered the tournament at some time, then we 

want just the distinct names Robert Pollard and William Taylor. 

• If the objective of the question is to find out how often men enter Leeston tourna-

ments, then we want to retain all the entries. In that case, it might be useful to retain 

the year as well.

Listings 10-5 and 10-6 show two options for the SELECT clause reflecting these two 

scenarios.
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Listing 10-5. The Names and IDs of Men Who Have Entered Leeston Tournaments

SELECT DISTINCT m.MemberID, m.LastName, m.FirstName

FROM ...

Listing 10-6. Information About Entries of Men in Leeston Tournaments

SELECT m.MemberID, m.LastName, m.FirstName, e.Year

FROM ...

Consider an Intermediate View

The SQL in Listing 10-3 is likely to be the basis of many queries about entries in tourna-

ments. For example, the following questions will all require a join of the Member, Entry, and 

Tournament tables:

• Do junior members enter Open tournaments?

• Which tournaments did William Taylor enter in 2005?

• What is the average number of Social tournaments that members entered in 2006?

As we are likely to use this large join many times, it can be convenient to make a view. 

Listing 10-7 shows a first attempt at the SQL for creating a view that retains all the fields 

from the joins.

Listing 10-7. Creating a View for the Join of the Tournament, Entry, and Member Tables (First 

Attempt)

CREATE VIEW AllTourInfo AS

SELECT * FROM

(Entry e INNER JOIN Tournament t ON t.TourID=e.TourID)

INNER JOIN Member m ON m.MemberID = e.MemberID

As it stands, this query will not run in most versions of SQL. This is because the view 

would have fields with the same name; for example, there will be two fields called MemberID:

one from the Entry table and one from the Member table.

When you create a view, all the field names must be distinct. The view will not use the 

aliases to differentiate the columns in the resulting table. The * in the SELECT clause needs to 

be altered to list all the field names. We need to either delete the duplicate names or rename 

those that are duplicated—SELECT m.MemberID AS MMember, e.MemberID AS EMember, and 

so on and on and on. This is a bit tedious, but if you are creating a view that you are likely 

to use many times, it is worth the effort.
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Once we have the view AllTourInfo, it can be used in the same way as any other table 

in our queries. To find the names of men who have entered a Leeston tournament, we can 

use the view as shown in Listing 10-8.

Listing 10-8. Retrieving the Names of Men Who Have Entered a Leeston Tournament Using 

a View

SELECT DISTINCT LastName, FirstName

FROM AllTourInfo

WHERE Gender = 'M' AND TourName = 'Leeston'

Spotting Key Words in Questions
The big picture approach assumes that you have decided how to combine the tables that 

will contribute to the query. Sometimes, you will think it is obvious that, for example, you 

need to join the tables. Other times, it may not be at all clear initially. In this section, we 

will look at some key words that often appear in questions and that can provide a clue 

about which relational operations you will need. If none of these help, remember that we 

still have the “No Idea Where to Start?” section coming up!

And, Both, Also

“And” and “also” can be tricky words when it comes to interpreting queries, and we will 

consider this further in the next chapter. In this section, we will look at queries that have 

the idea of two conditions needing to be met simultaneously. Queries that require two 

conditions to be met fall into two sorts: those that can be carried out with a simple WHERE 

clause containing AND and those that require an intersection or self join.

To decide if a query really needs two conditions to be met, I usually look at a natural-

language statement and see if I can reword it with the word “both” connecting the conditions. 

Consider these examples:

• Find the junior boys. (Both a male and a junior? Yes.) 

• Find those members who entered tournaments 24 and 38. (Both tournaments? Yes.)

• Find the women and children. (Both a female and a child? No.)

The last query is the one that can trick you. Although it contains the word “and,” the 

common interpretation of “women and children” doesn’t mean someone who is both a 

female and a child (that is, a girl). Rather, the phrase means anyone who is either a female 

or a child (especially when populating lifeboats). 
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The diagram in Figure 10-8 is a way of visualizing whether a query needs two conditions to 

be met. It portrays the example about woman and children. It shows both the union (only 

one condition must be satisfied) and the intersection (both conditions must be satisfied) 

of the set of women and the set of children. It is worth thinking like this about your data to 

decide what you actually need to answer your query accurately.

Figure 10-8. Visualizing if two conditions both need to be met

When two conditions must be met, we are looking at the intersection of two groups 

of data, as in the diagram in Figure 10-8b. If we have a query that requires an intersection, 

that doesn’t necessarily mean we must use the INTERSECT keyword. I find the following 

question helpful in deciding what to do next:

Do I need to look at more than one row to decide if both conditions are satisfied?

Consider the query to find junior boys. This is going to need the Member table. Can we 

look at a single row and determine if the member is both a junior and a boy? As we can see 

in Figure 10-9, it is possible to determine both these conditions from a single row.

Figure 10-9. We can investigate both conditions by looking at a single row.

Females Children Females Children

a) Either condition
(Women “and” children)

b) Both conditions
(”Girls”)
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In this situation, we can use a simple select operation with the Boolean AND to check 

for both conditions. This is discussed in Chapter 2, and the SQL is shown in Listing 10-9.

Listing 10-9. Both Conditions Can Be Checked in a Single WHERE Clause

SELECT * FROM Member m

WHERE m.Gender = 'M' AND m.MemberType = 'Junior'

Now consider a different type of query. What about finding the members who have 

entered both tournaments 24 and 36? To do this, we need to look at the Entry table (probably 

joined with the Member table if we want the names). As we can see in Figure 10-10, we 

cannot check that a member has entered both tournaments by looking at a single row.

Figure 10-10. We need to investigate more than one row to check both tournaments.

Where we have a question needing to satisfy both of two conditions and we need to 

look at more than one row in the table, we can use a self join (discussed in Chapter 5) or 

an intersection (discussed in Chapter 7), as in Listings 10-10 and 10-11.

Listing 10-10. Finding Members Who Have Entered Both Tournaments Using a Self Join

SELECT e1.MemberID

FROM Entry e1 INNER JOIN Entry e2 ON e1.MemberID = e2.MemberID

WHERE e1.TourID = 24 AND e2.TourID = 36

Listing 10-11. Finding Members Who Have Entered Both Tournaments Using an Intersection

SELECT MemberID FROM Entry WHERE TourID = 24

INTERSECT

SELECT MemberID FROM Entry WHERE TourID = 36
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Not, Never

Here are some examples of queries involving the word “not” or “never”:

• Find the members who are not seniors.

• Find members who are not in a team.

• Find members who have never played in a tournament.

Often when people see “not” in a description of a query, they immediately think of 

using a Boolean NOT or a <> operator in a WHERE clause. This is fine for some queries, 

but not for all of them. As in the previous section, I find the following test helpful to deter-

mine the type of not query:

Do I need to look at more than one row to decide if a condition is not true?

For the first two queries, we can look at a single row in the Member table and decide whether 

that member satisfies the condition. In the first query, the condition in the WHERE clause 

would be NOT MemberType = 'Senior' or MemberType <> 'Senior'. To find members who 

are not in a team, we want the Team field to be empty, so a clause like WHERE Team IS NULL

would do the trick.

To find the members who have not entered a tournament, what tables do we need? We are 

certainly going to need the Entry table. We can decide if a member has entered a tournament 

by finding just one row with his member ID. To see if he has not entered a tournament, 

we need to look at every row. We also must look at the Member table to find a list of all our 

members. In situations like this, we need to think about the relational algebra difference 

operator. We can do this are by using the keyword EXCEPT (discussed in Chapter 7) or by 

using a nested query (discussed in Chapter 4). Two examples to retrieve the member IDs 

of members who have never entered a tournament are shown in Listings 10-12 and 10-13. 

Once we have the IDs, we can perform another join to get the names. Chapter 7 shows 

many examples of how to carry out difference operations.

Listing 10-12. Finding Members Who Have Never Entered a Tournament Using EXCEPT

SELECT MemberID FROM Member

EXCEPT

SELECT MemberID FROM Entry

Listing 10-13. Finding Members Who Have Never Entered a Tournament Using a Nested Query

SELECT m.MemberID FROM Member m

WHERE m.MemberID NOT IN

    (SELECT e.MemberID FROM Entry e)
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All, Every

Wherever you see the word “all” or “every” in a description of a query, you should imme-

diately think of the division operator (discussed in Chapter 7). Here are some examples of 

such queries:

• Find members who have entered every open tournament.

• Has anyone coached all the juniors?

No Idea Where to Start?
So you have looked at the query and decided which tables you think will be involved. You’re 

not sure if a join is the right path. You’ve checked for some key words, but you still feel 

confused. Now what? This is not uncommon (it happens to me regularly), so just relax.

When I have no idea where to start, I forget all about set operations and SQL. I stop thinking 

about tables, foreign keys, joins, and so on. Instead, I open the tables I think I will need to 

answer the question and look at some of the data. I try to find examples that should be 

retrieved by the query. Then I try to write down the conditions that make that particular 

data acceptable. This is the relational calculus approach. Relational calculus is describing 

what the rows returned by the query are like. I’ve been using this approach all the way 

through the book, alongside the algebra approach of deciding how to manipulate the tables.

Let’s try a query that stumped me a bit when I first thought of it: “Which teams have a 

coach as a manager?” The steps described here can really help.

Find Some Helpful Tables

Let’s look at the key words in the query “Which teams have a coach as a manager?” We 

have the nouns “team,” “coach,” and “manager.” We have a table called Team. Coach and 

Manager are fields in the Member and Team tables, respectively. So the Team and Member tables 

look like a good place to start.

Try to Answer the Question by Hand

Next, take a look at the data in the tables and see how you would decide if a team had a 

coach as a manager. Figure 10-11 shows the relevant columns of the two tables.
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Figure 10-11. How do we tell if a team has a coach as a manager?

We can find the IDs of the two team managers easily enough. They are the values in the 

Manager column of the Team table (239 and 153). Now, how do we check if these members 

are coaches? Looking at the Member table, we see that the coaches are in the Coach column. 

We need to check if either of our two managers appears in the Coach column. Member 239 

doesn’t appear, so his team (TeamA) is not managed by a coach. Member 153 does appear 

somewhere in the Coach column, so his team (TeamB) is managed by a coach. So we have 

answered our query. TeamB is managed by a coach.

Write Down a Description of the Retrieved Result

Our query is “Which teams have a coach as a manager?” So following what we did in the 

previous section, we can write a description of what the rows we retrieve should be like. 

This is where I like to have imaginary fingers pointing to the relevant rows to make it easier to 

describe the query, as in Figure 10-12.

We are going to check every team to decide if it should be retrieved. The condition that 

would allow us to decide is something like this (we’ll look at a different way shortly):

I’ll write out the TeamName from row t, where t comes from the Team table, if there
exists a row (m) in the Member table where the value of coach (m.Coach) is the
manager of the team (t.Manager).

MemberTeam
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Figure 10-12. Naming the rows to help describe what the retrieved data should be like

In a slightly more formal way (if you prefer), we can write this as the relational calculus 

expression in Listing 10-14.

Listing 10-14. Relational Calculus Expression for Finding Teams with a Coach As a Manager

{t.TeamName | Team(t) and  (m) Member(m) and t.Manager = m.Coach}

We can now translate this almost directly into SQL using a nested query (discussed in 

Chapter 4). One possibility is shown in Listing 10-15.

Listing 10-15. Finding Teams with Coaches As Managers (One Way)

SELECT t.TeamName FROM Team t

WHERE EXISTS

   (SELECT * FROM Member m WHERE m.Coach = t.Manager)

Is There Another Way?

First attempts at queries aren’t necessarily the most elegant. After all, we are following this 

route because we were stumped in the first place. Following the technique of solving the 

query by hand and describing the conditions helps you understand what you are trying to 

do. That often makes the query seem much easier than you first thought.

m

t

MemberTeam
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Having done the query as described in the previous section, I then realized that I could 

have thought of it this way: the manager just has to be in the set of coaches. I can easily 

find the list of coaches with a simple query, and then use that in a nested query, as shown 

in Listing 10-16.

Listing 10-16. Finding Teams with Coaches As Managers (Another Way)

SELECT t.TeamName FROM Team t

WHERE t.Manager IN

   (SELECT m.Coach FROM Member m)

For me, the query in Listing 10-16 is simpler and easier to understand than the one in 

Listing 10-15, so I would probably prefer to use that one.

As always, there are often many ways to achieve the same result. We could have done an 

inner join on the Team and Member tables with the join condition being t.Coach = m.Manager.

The managers who don’t appear in the Coach column will not appear in the inner join (see 

the section on outer joins in Chapter 3). The SQL for this approach is shown in Listing 10-17.

Listing 10-17. Finding Teams with Coaches As Managers Using an Inner Join

SELECT DISTINCT t.TeamName FROM Team t INNER JOIN Member m

ON t.Manager = m.Coach

Personally, I don’t find the query in Listing 10-17 particularly intuitive. I doubt if someone 

else looking at the query would easily understand its purpose. I still like Listing 10-16 best 

in terms of ease of understanding.

You might also like to check the efficiency of each of the queries (discussed in Chapter 

9), if you think that might be important (unlikely in this case). For SQL Server 2005, each 

of the queries in Listings 10-15, 10-16, and 10-17 had the same execution plan, so they 

were all carried out in exactly the same way under the hood.

Checking Queries
You’ve written a query, run it, and got some results. Is all well and good? Not necessarily. 

Just as first attempts at a query may not be elegant, neither might they be correct. Mistakes 

might arise from simple errors in the query syntax. These are usually easy to spot and 

correct. However, errors that result from subtle misunderstandings of the question or of 

the data can be more difficult to find.

I can’t offer a foolproof way of checking that your query is correct, but I can give you 

some ideas for catching potential errors. Basically, they boil down to checking that you do 

not have extra, incorrect rows in your result and checking that you aren’t missing any 

rows. In this section, we will look at ways to notice that your query has a problem. In the 

next chapter, we will look at some of the common mistakes that might be behind errors.



CH A PT E R  1 0  ■  H O W  TO  A P PR O A CH  A  Q U E R Y 187

Check a Row That Should Be Returned

Take a look at your data and determine one record or row that should be returned by your 

query. For example, in our example about teams with managers as coaches, check through 

the tables and find at least one team that satisfies the query. In Figure 10-12, we see that 

TeamB satisfies the conditions, so check that this team is in your output. 

Remember that some queries may quite legitimately have no output. For example, it’s 

perfectly reasonable that, with the data we have at any particular time, no teams are managed 

by a coach. However, your query must work in all situations. If it is at all possible, make a 

copy of the tables, alter the data so that a row meets the condition, and check that it is 

returned correctly.

Check a Row That Should Not Be Returned

Similar to checking for a row that should be returned, look through the data and find a 

team that doesn’t have a coach as a manager. TeamA’s manager (member 239) does not 

appear as a coach in the Member table, so make sure that team is not included in your output. 

Once again, it is a good idea to use some dummy data to check this if the real data does not 

cover all eventualities.

Check Boundary Conditions

If your query has any sort of numeric comparison, you should check it carefully. Consider 

a query where we want to find people who have been members of our club for more than 

10 years. To be certain of the correctness, we need to check three possibilities:

• Make sure no record is returned for someone with less than 10 years of membership 

(for example, 8 years of membership).

• Make sure that someone who has belonged to the club for 12 years does get his 

record retrieved.

• Check for someone who has been a member for exactly 10 years. 

The last boundary condition is always tricky. It depends whether we use > or >= in the 

select condition. It might also mean reconsidering the original question. In this case, the 

request is probably for members with 10 or more years of membership. You should check 

with your users if there is any doubt.

Finding data in your tables that falls exactly on the boundaries is not always easy. However, 

you can always change the numeric value in your query. Find a particular member and 

change the value you are checking against in the query to match their years of membership. 



188 CH AP T E R  1 0  ■  H O W TO  AP P R O AC H A  Q U E R Y

If Harry has been a member for 16 years, change the query to check for 16 or more years 

of membership, and see if Harry is included (or not) as you expect.

Another important boundary condition, especially for aggregates and counts (covered 

in Chapter 8), is the value 0. Consider a query such as “Find members who have entered 

fewer than six tournaments.” Doing a grouped-by count on the Entry table will return 

some rows for sure, and we can check for those who have less than, more than, or exactly 

six entries. However, what about members who have never entered a tournament? They 

won’t appear in the Entry table at all and will be missing from the results. So whenever 

aggregates are involved, always check what happens for a count of 0. For example, does 

your query return members who have entered no tournaments?

Check Null Values

Be aware that some of the values you are checking against may be Nulls (discussed in 

Chapter 2). How does your query about team managers cope with the situation where the 

Manager field is Null? Try it out on some dummy data and see. What do we expect (or want) 

to happen if there is a Null in the JoinDate field when we run the query about length of 

membership?

Summary
The first rule about starting a query is don’t panic. The next rule is to take small steps and 

look at the intermediate output to see if what you have done so far is helping you. Retain 

as many columns as possible in your initial queries, so you can check that you understand 

what is happening.

Figure 10-13 gives a summary of some of the steps you can take when first starting out 

on a query. The diagram doesn’t cover the whole process, but you should be able to make 

a reasonable start with these steps. Refer to the relevant chapters for more help.
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Figure 10-13. Some steps to help you get started on a query
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Common Problems

In this book, you’ve seen many different ways to tackle a variety of categories of queries. 

However, even if a query retrieves some valid-looking rows, all may not be well. In the 

previous chapter, we looked at the importance of checking the output to confirm that (at 

least some of) the rows retrieved are correct, as well as checking to make sure that (at least 

some) incorrect (or irrelevant) rows are not being retrieved. 

The problems that can befall queries are not just a matter of having the wrong syntax in 

your SQL statements, although that can certainly happen. Problems with the design of the 

tables or with data values can also affect the accuracy of queries. In this chapter, we will 

look at some common design and data problems, and also some of the most common 

syntactic mistakes.

Poor Database Design
Good database design is absolutely essential to being able to extract accurate information. 

Unfortunately, you will sometimes be faced with databases that are poorly designed and 

maintained. Often there is not a great deal you can do. Sometimes you can extract some-

thing that looks like the required information, but it should come with a caution that the 

underlying data was probably inconsistent.

Data That Is Not Normalized

One of the most common data design mistakes is to have tables that are not normalized. 

We looked at an example of this in Chapter 1. Rather than having two tables—one for 

members and one for membership information like fees—all this data was stored in one 

table, as in Figure 11-1.
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Figure 11-1. A nonnormalized Member table containing fee information

What happens now if we are asked to find the fee for senior members? The query in 

Listing 11-1 will result in two values: 300 and 280.

Listing 11-1. Finding the Fee for Senior Members

SELECT DISTINCT Fee

FROM Member

WHERE MemberType = 'Senior'

Although the two values retrieved by Listing 11-1 may be surprising, nothing is wrong 

with the query or the result. The different value for senior member Thomas Spence gives 

us the additional fee result. That value may be a typographical error, or it may indicate 

some sort of discount for Thomas. In either case, there is a problem with the design. The 

design should allow for regular fees to be recorded consistently and, if necessary, allow for 

storage of additional discounting regimes. At this point, other than redesigning the tables, 

there is nothing we can do but return the list of fees that have been recorded against the 

senior members. It is just worth understanding the underlying issues.

Another problem you may encounter is a single table that stores multivalued data. Say 

our club has many different teams—interclub teams, social teams, pairs, foursomes, and 

so on—that members may belong to simultaneously. It is very common for tables to be 

redesigned to store additional values, as shown in Figure 11-2.

Figure 11-2. Poor table design to store more than one team for a member
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Now suppose we are asked to find those members in TeamA. You can immediately see 

the problem. Melissa has “TeamA” in the Team1 column, and Brenda has “TeamA” in the 

Team3 column. We need to check every team column for the existence of TeamA. This isn’t 

that difficult; the query in Listing 11-2 will do the trick.

Listing 11-2. Finding Members of TeamA

SELECT * FROM Member

WHERE Team1 = 'TeamA' OR Team2= 'TeamA' OR Team3 = 'TeamA'

While we can extract the information we require, the design in Figure 11-2 is clearly not 

the best way to store it. We will certainly start encountering problems if we need queries 

like “Find members who are in both TeamA and TeamB” or “Find members who are in 

more than two teams.” You could probably devise queries that would answer these ques-

tions, but at this point, I would ask for the database to be redesigned properly before trying to 

fulfill such requests. 

What is required is an intermediate Membership table to record relationships between 

members and teams. This is very like the Entry table, which records relationships between 

members and tournaments. The Membership table would look something like Figure 11-3.

Figure 11-3. A Membership table that records the relationship between members and teams

With the additional Membership table, we can now use all the relational operations, 

as described in previous chapters, to easily answer questions like “Who is in TeamA and 

TeamB?” and “Who is in three or more teams?”

We can create a Membership table with the SQL in Listing 11-3. The code includes foreign 

key constraints to the existing Member and Team tables and a concatenated primary key.

Listing 11-3. Creating a New Membership Table

CREATE TABLE Membership (

MemberID INT FOREIGN KEY REFERENCES Member,

Team Char(20) FOREIGN KEY REFERENCES Team,

PRIMARY KEY (MemberID, Team) )
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If you don’t mind a bit of manual fiddling about, you can populate the table with repeated 

update queries like the one in Listing 11-4. The query finds each member who is in TeamA 

and creates an appropriate row in the Membership table. If there are not too many teams, 

you can manually alter the second and last lines of the query for each team (TeamA, TeamB, 

and so on) and create a Membership table quite quickly. You then need to delete the Team

columns from the Member table in Figure 11-2, and the database will look a whole lot better.

Listing 11-4. Creating Rows in the Membership Table for TeamA

INSERT INTO Membership (MemberID, Team) 

SELECT MemberID, 'TeamA'

FROM Member

WHERE Team1 = 'TeamA' OR Team2= 'TeamA' OR Team3 = 'TeamA'

No Keys

The previous section gave an example of the problems you can run into if the underlying 

database has the inappropriate tables for your query. You sometimes find that the data-

base has the appropriate tables, but without any primary or foreign key constraints. In 

these cases, you can run your queries, but the underlying data is likely to be inconsistent. 

In this section, you will see how you can find some of the inconsistencies by running a few 

queries.

Suppose that the Membership table in Figure 11-3 had been created without a primary 

key. Then we run the risk of having duplicate rows. For example, we might have two iden-

tical rows for member 118 in TeamA, which would cause a query that counts the number 

of members in TeamA to give the wrong result. 

If you try to add a primary key when duplicates already exist, you will get an error, which is 

one way to find where the problems are! Another way is to do a GROUP BY query on the 

fields that should be in the primary key and use a HAVING clause to find those with two or 

more entries, as in Listing 11-5.

Listing 11-5. Finding Rows with Duplicate Values in the Potential Primary Key

SELECT MemberID, Team, Count(*)

FROM Membership

GROUP BY MemberID, Team

HAVING Count(*) > 1

Listing 11-5 will find the problem rows. When the table has fields other than the primary 

key fields, you need to manually inspect the values in those columns to decide which row 

should be deleted. The Membership table, which has only primary key fields, causes a different 

problem. How do we delete just one copy of the row for member 118 in TeamA? Because 
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the entire rows are the same, we can’t differentiate them, and so any query that deletes 

one will delete both. We can, in this situation, create a new table, and then insert just the 

distinct values with the query in Listing 11-6.

Listing 11-6. Creating a New Table with Distinct Rows

INSERT INTO NewMembership

SELECT DISTINCT MemberID,Team

FROM Membership

Another problem is having a Membership table (as in Figure 11-3) with no foreign 

key constraints. The first row could then have that member 1118 is in TeamA when no 

member 1118 is listed in the Member table. There are several ways to find such unmatched 

values in the Membership table. One way is to use a nested query (discussed in Chapter 4), 

as shown in Listing 11-7.

Listing 11-7. Finding Unmatched MemberIDs in the Membership Table (Using Difference)

SELECT ms.MemberID FROM Membership ms

WHERE ms.MemberID NOT IN

     (SELECT m.MemberID FROM Member m)

Similar Data in Two Tables

Sometimes a database has extra tables. An example for our club database would be to 

have a separate table for coaches or managers, as shown in Figure 11-4.

Figure 11-4. An additional table for coaches (poor design)

For beginners, the extra table in Figure 11-4 makes it easy to create lists of coaches and 

their phone numbers (which would otherwise require a self join or nested query). However, 

the additional table soon causes problems. In Figure 11-4, we already see inconsistent 

data for William Cooper’s phone number. The only real cure is to get rid of the extra table. 

Coach table Some rows and columns from the Member table
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Using set operations (discussed in Chapter 7) can help us understand what the data contains. 

We can use the intersection operator to find rows for people who are in both tables, and 

the difference operator to find those who are in one and not the other. Once the design is 

correct, creating a view that shows the coach information would be helpful to your novice 

users. Listing 11-8 does the trick.

Listing 11-8. A View to Retrieve Information About Coaches

CREATE VIEW CoachInfo AS

SELECT * FROM Member

WHERE MemberID IN

    (SELECT Coach FROM Member )

Wrong Types

Having the fields in a table created with inappropriate types is another problem that can 

make queries look as though they are not behaving. I’ve seen whole databases where every 

field is a default text field.

Having the wrong field type means the data misses out on a whole lot of validity checking. 

For example, if our Member table had all text fields, we could end up with value like “16a” 

or “1o” in the Handicap column or text like “Brenda” in the Coach column.

Incorrectly entered values aside, inappropriate types give rise to other problems. Each 

type has its own rules for ordering values. Text types order alphabetically, numbers order 

numerically, and dates order chronologically. Different orderings clearly will be an issue 

if we add an ORDER BY clause to a query. A text field containing numbers will order alpha-

betically, giving an order like “1”, “15”, “109”, “20” “245”, “33”, as described in Chapter 2.

Incorrect types also cause a problem with making comparisons. If we ask for values to 

be compared, the comparison used will depend on how the particular field type involved 

is sorted. For numbers entered in a text field, we will get comparisons such as “109” < “15” 

or “33” > “245”. This will cause some odd output if we ask for people with handicaps less 

than 5, for example. It can be difficult to sort out what is going wrong, because the query 

syntax is fine and the data appears to be OK. Going behind the scenes to check out the 

data type is certainly not the first thing that may occur to you.

It is possible to change the type of a column in an existing table, but I find it a bit scary. 

For example, if you change from text to numeric values, “10” will probably be fine, but 

“1o” will cause an error. I prefer a more conservative approach: I make a new table with 

the appropriate types, and then insert the old values with the aid of a conversion function. 

Listing 11-9 shows how we could create a new table with a numeric value for the Handicap

column.
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Listing 11-9. Adding (Some) Converted Values to a New Table

INSERT INTO NewMember (MemberID, LastName, FirstName, Handicap)

SELECT MemberID, LastName, FirstName, CONVERT(INT Handicap)

FROM Member

This way, I still have the original data if the conversions do something I wasn’t expecting.

Problems with Data Values
Even with a well-designed database, we still have the issue of the accuracy of the data that 

has been entered. As the query designer, you can’t be held responsible for some accuracy 

problems. If a person’s address has been entered incorrectly, there is not much anyone 

can do to find or fix the problem (apart from waiting for the mail to be returned to sender). 

However, you can be aware of a number of things, and even if you can’t fix the problems, 

you can at least raise some alarms. In addition, it is sometimes possible to fix some problem 

data with careful use of update queries.

Unexpected Nulls

Nulls can cause all sorts of grief in databases. The real problem (as discussed in Chapter 2) 

is that a Null can mean either that the value is unknown or that the value doesn’t apply for 

a particular record. If a member in our club has a Null value for his Team field, it could 

mean he isn’t in a team or it could mean that he is in a team but we haven’t recorded 

which one. As with other data problems, there is not much we can do about this. However, 

with something like the Gender field, we know that everyone does have a gender. The Nulls 

mean that for some members the gender has not been recorded. The same applies to 

fields like date of birth.

If, for example, you are asked for a list of the men in the club, it is often a good idea to 

also run another query for those rows where Gender IS Null. You can then say to your client, 

“Here are the men, and here are the members I’m not sure about.” Such an approach can 

help avoid letters from aggrieved gentlemen who don’t appear on the list.

Be aware of the differences between queries with COUNT(*) and say COUNT(Gender). The 

first will count all the rows in your database; the second will count all the rows with a non-

Null value for gender. In the ideal world, these would be the same. In practice, they may 

not be.

Wrong or Inconsistent Spelling

Any database will have spelling mistakes in the data at some point. Mr. Philips may appear as 

Phillips, Philipps, or Philps for various reasons, ranging from illegible handwriting on the 
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application form to a simple data-entry mistake. If you are trying to find information about 

Mr. Philips and you suspect there might be a problem, you can use functions or wildcards 

to find similar data. Different products have different ways of doing this.

We can use the keyword LIKE to find similar spellings. The wildcard symbol % (* in Access) 

stands for any group of characters. Our several versions of spelling for Philips would all be 

retrieved by the query in Listing 11-10. 

Listing 11-10. Using the Wildcard % to Retrieve Different Names Beginning with “Phil”

SELECT * FROM Member

WHERE LastName LIKE 'Phil%'

Another problem involving incorrect or inconsistent spelling arises when you might be 

expecting a particular set of values or categories in a field. For example, in our Member table, we 

might be expecting values “M” and “F” in the Gender column, but there may be the odd 

“male” or “m” value. In the MemberType column, we expect a “Junior” value, “Senior” value, or 

“Associate” value, but in practice, it may have other values, such as “jnior” or “senor”. 

If the tables have been designed with appropriate check constraints or foreign keys, this 

won’t be a problem. However, often these constraints are not present, so it is useful to 

check for problematic entries with a query such as the one in Listing 11-11.

Listing 11-11. Finding Inconsistent Data in a Categorical Column Such As MemberType

SELECT * FROM Member

WHERE Gender NOT IN ('Senior','Junior','Associate')

Extraneous Characters in Text Fields

A common problem when trying to retrieve data that matches a text value is leading or 

trailing spaces and other nonprintable characters that have found their way into the data.

If we have a field like FirstName in our database, for example, we would usually declare 

it as a character field of some sort having a particular length. Because many values won’t 

be exactly that stated length, there is room for additional characters to be included. Some 

implementations of SQL will deal with spaces before or after the text without intervention 

from the querier. For example, Access will retrieve “ Dan” and “Dan ” if asked to find rows 

where FirstName = 'Dan'. Some implementations might require you to specifically state that 

you don’t want to consider the leading or trailing spaces, which you can do with various 

forms of a trim function. Check out your documentation to see what your implementa-

tion has. The RTRIM (right trim) function in Listing 11-12 will strip the spaces from the 

end (right) of the FirstName value before making the comparison.
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Listing 11-12. Trimming Trailing Spaces Before Making a Text Comparison

SELECT * FROM Member

WHERE RTRIM(FirstName) = 'Dan'

You can use update queries to remedy some of these data inconsistencies. Listing 11-13 

shows how to ensure no values in the FirstName column of the Member table have any 

leading (LTRIM) and trailing (RTRIM) spaces. It essentially replaces all the values with 

trimmed values.

Listing 11-13. Removing All Leading and Trailing Spaces from the FirstName Values

UPDATE Member

SET FirstName = RTRIM ( LTRIM (FirstName))

A more disturbing problem is characters that look like spaces but aren’t. This sometimes 

occurs when data is moved around between various products and different implementations. 

I actually experienced this when generating and maintaining both an Access and SQL 

Server version of the tables for this book. All of a sudden, some of my queries to find rows 

with certain names weren’t working. The name fields looked like they had gained some 

extra trailing spaces, but using trim functions wasn’t helping. Eventually, I realized that 

the extra characters weren’t spaces but some other unprintable character. By using a wildcard 

expression as in Listing 11-10, I managed to retrieve the right rows. 

Two other data-entry “gotchas” are the numbers 0 (zero) and 1 (one) entered instead of 

the letters o and l. You can spend hours trying to debug a query that is looking for “John” 

or “Bill”, but if the underlying data has been mistakenly entered as “J0hn” or “Bi11”, you 

will search in vain.

The moral is that weird things can happen with data values, so when the troubleshooting 

of your query syntax fails, check the underlying data.

Inconsistent Case in Text Fields

If your SQL implementation is case-sensitive, you need to be aware that some data values 

may not have the expected case. Someone may have entered “dan” rather than “Dan” 

as a member’s first name in the Member table. In case-sensitive implementations, a query 

with the clause WHERE FirstName = 'Dan' will not retrieve his information. As mentioned 

in Chapter 2, using a function that converts strings of characters to uppercase will help 

find the right rows. In Listing 11-14, we convert FirstName (temporarily) to uppercase, and 

then compare that with the uppercase rendition of what we are seeking.

Listing 11-14. Finding Dan’s Information Regardless of the Case in the Database Table

SELECT * FROM Member

WHERE UPPER(FirstName) = 'DAN'
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It is quite difficult to find problems with case in names because not all names conform 

to being lowercase with an uppercase first letter; for example, de Vere and McLennan. But 

for fields like Gender (M or F) or MemberType (Junior, Senior, or Associate), we know what 

we expect the values to be like. The best way to ensure that they are consistent is to put a 

check constraint on the field when the table is created to restrict the allowed values. This 

is shown in Listing 11-15.

Listing 11-15. Including a Constraint on the Values of MemberType

CREATE TABLE Member (

...

MemberType CHAR(20) CHECK MemberType in ('Junior', 'Senior', 'Associate')

...

)

If you are confronted with a table that has the values “JUNIOR”, “Junior”, and “junior”, 

you can effect some repairs with the query in Listing 11-16. (But it’s best to avoid getting 

into this situation if you can.)

Listing 11-16. Getting Case Consistency for the Junior Member Types

UPDATE Member

SET MemberType = 'Junior'

WHERE UPPER(MemberType)='JUNIOR'

Diagnosing Problems
In the previous sections, we looked at some problems you could possibly find with data-

base design and inconsistent data. Most of the time, however, if the result of your query is 

not looking quite right, it is probably because you have the wrong SQL statement. Your 

statement may be retrieving rows that are different from what you were expecting. We 

looked at checking the query output in Chapter 10. I cannot overemphasize the impor-

tance of checking your query results, as sometimes two queries may be subtly different, 

and it can be tricky to spot if you have mistakenly asked the wrong question.

In the previous chapter, I suggested a way to approach queries that lets you build the 

query up slowly so you can check that each step is returning appropriate rows. However, 

if you are presented with a full-blown, complex query that is not delivering as expected, 

you need to pare it down until you find where the problem lies. If you have noticed a problem, 

then you have a good place to start. You have either noticed an expected row is missing or 

that an inappropriate row has been retrieved. Concentrate on finding where in the query 

that problem is. The following sections offer some suggestions.
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Check Parts of Nested Queries Independently

Where you have one query nested inside another, the first thing to check is that the nested 

part is behaving itself. Take a look at Listing 11-17.

Listing 11-17. SQL Statement to Retrieve Juniors with Handicaps Lower Than the Average 

SELECT *

FROM Member m

WHERE m.MemberType = 'Junior' AND Handicap <

      (SELECT AVG(Handicap)

       FROM Member)

If you are having trouble with a query like this, cut and paste the inner query and run it 

independently. Check to see if it is returning the correct result. If this is OK, you can try 

doing the outer query on its own. To do this, just put some value in place of the inner 

query—such as Handicap < 10—and see if that returns the correct results. If you can 

narrow down the problem to one part of the query, then use some of the ideas in the 

following sections.

This approach doesn’t work if the inner and outer parts of the query are related (see 

Chapter 4), but some of the following techniques might help with that situation.

Understand How the Tables Are Being Combined

Many queries involve combining tables with some relational operation (join, union, and 

so on). Make sure you understand how the tables are being combined and if that is appro-

priate. Consider a query such as the one in Listing 11-18.

Listing 11-18. How Are the Tables Being Combined?

SELECT m.LastName, m.FirstName

FROM Member m, Entry e, Tournament t

WHERE m.MemberID = e.MemberID

AND e.TourID = t.TourID AND t.TourType = 'Open' AND e.Year = 2006

Three tables are involved in this query. It can take a moment to figure out that they are 

being joined. Make sure that is appropriate for the question being asked. Chapter 10 has 

examples of key words in questions and the appropriate ways to combine tables.

Remove Extra WHERE Clauses

After combining tables, usually only some of the resulting rows are required. In Listing 11-18, 

part of the WHERE clause is needed for the join operations. However, after the join, only 

the rows satisfying t.TourType = 'Open' AND e.Year = 2006 are retained. If you have rows 
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missing from your result, it is often useful to remove the part of the WHERE clause that is 

selecting a final subset of the rows. If the rows are still missing, then you know that (for 

this example) the problem is occurring in the join.

Retain All the Columns

I’m a big fan of always saying SELECT * in the early stages of developing queries that involve 

joins. Consider the query in Listing 11-18. If we suspect a problem with the joins, then by 

leaving all the columns visible, we can see if the join conditions are behaving as expected. 

Once we are happy with the rows being retrieved, we can retain just the columns required.

However, if you are combining tables with set operations, this approach will be counter-

productive, as projecting the right columns is critical (see the “Do You Have Correct Columns 

in Set Operations?” section later in this chapter).

Check Underlying Queries in Aggregates

If you have a problem with a query involving an aggregate—for example, SELECT 

AVG(Handicap) FROM ... WHERE ...—check that you have retrieved the correct rows first. 

Change the query to SELECT * FROM ... WHERE ..., and confirm that this returns the rows 

for which you want to find the average. In fact, I recommend always doing this with an 

aggregate, because it is difficult to otherwise check if the numbers being returned are correct.

Common Symptoms
Having tried some of the steps in the previous chapter, you will have simplified your query 

to isolate where the problem is. In this section, we will look at some specific symptoms 

and some likely causes.

No Rows Are Returned

It is usually easy to spot a problem with your query when no rows are returned and you know 

that some should be. Questions that involve “and” or “both” can often have this problem. 

Check that you have not mistakenly used a select operation instead of an intersection. For 

example, consider a question such as “Which members have entered tournaments 24 

and 36?” A common first attempt (and I still catch myself doing this sometimes) is a query 

statement such as the one in Listing 11-19.

Listing 11-19. Incorrectly Using a Select Condition for Questions Involving “And” or “Both”

SELECT * FROM Entry

WHERE TourID = 24 AND TourID = 36
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Listing 11-19 asks for a row from the Entry table where TourID simultaneously has two 

different values. This never happens, and so no rows are retrieved. The cure is to use a self 

join (covered in Chapter 5) or an intersection operation (covered in Chapter 7).

Getting no rows returned from a query may also be an extreme example of one of the 

problems in the next section.

Rows Are Missing

It can be difficult to spot if some rows are being missed by your query, especially when the 

set of retrieved rows is large. If you get a thousand rows returned, you might not notice 

that one is missing. Careful testing is required, and some ideas for how to do this were 

discussed in Chapter 10. It is often worthwhile to run through the following list of common 

errors to see if any might apply.

Should You Have an Outer Join?

Using an inner join when an outer join is required is a very common problem. Suppose 

that we are trying to get a list of member information, that includes names and fees. For 

this, we need the Member table (for the names) and the Type table (for the fees). A first attempt 

at a query is in Listing 11-20.

Listing 11-20. First Attempt at Finding Name and Fee Information for Members

SELECT m.LastName, m.FirstName, t.Fee

FROM Member m , Type t

WHERE m.MemberType = t.Type

We know there are (say) 135 members, but we are getting only 133 rows from the query 

in Listing 11-20. The issue here is that Listing 11-20 is performing an inner join (see Chapter 3), 

so any members with a Null value for member type will not appear in the result. Of course, 

this may be the result you want (those members who have a type and fee), but it is not the 

correct output if you want a list of all members and the fees for those who have them.

An outer join (also discussed in Chapter 3) that includes all the rows of the Member table 

will solve this problem. Whenever you have a join, it is worth thinking about the join fields 

and considering what you want to happen where a row has a Null value in that field.

Have Selection Conditions Dealt with Nulls Appropriately?

Nulls can cause quite a few headaches if you forget to consider their effect on your queries. 

The previous section looked at Nulls in a joining field. You also need to remember to check for 

comparisons involving fields that may contain Nulls. We looked at this in Chapter 2 and 

also earlier in this chapter.

Consider two queries on the Member table with selection conditions Gender = 'M' and 

Gender <> 'M'. It is reasonable to think that all rows in the Member table should be returned 
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by one of these queries. However, rows with a Null in the Gender field will return false 

for both these conditions (any comparison with a Null returns false), and the row will not 

appear in either result.

Say we want to get a list of members of our club who are not particularly good players 

(to offer them coaching, perhaps). Someone may suggest a query like Listing 11-21 to find 

members who do not have a low handicap.

Listing 11-21. Finding Members Without a Low Handicap

SELECT *

FROM Member m

WHERE NOT (m.Handicap < 10)

The problem is that the query in Listing 11-21 will miss all the members with no hand-

icap. Altering the WHERE condition to NOT (m.Handicap < 10) OR m.Handicap IS Null will 

help in this situation.

Are You Looking for a Match with a Text Value?

It is very disturbing to be trying to find rows for Jim, to be able to see Jim in the table, and 

to have your query return nothing. This may be caused by one of the problems we looked 

at in the “Problems with Data Values” section earlier in this chapter.

One quick way to eliminate the possibility of dodgy text values is to use LIKE for compar-

isons. For example, where you have = 'Jim', replace it with LIKE '%Jim%'. If the query then 

finds the row you were expecting (possibly along with some others), you know the problem 

is with the data. As noted earlier, putting the wildcard % (or * in Access) at the beginning and 

end of the string will find leading or trailing spaces and other nonprintable characters.

Have You Used AND Instead of OR?

We discussed the problem of queries involving “and” or “or” in the previous chapter (in 

the “Spotting Key Words in Questions” section). I’ll recap briefly. The word “and” can be 

used in English to describe a union and an intersection. When we say “women and children,” 

we really mean the union of the set of females and the set of young people. When we say 

“cars that are small and red,” we mean the intersection of the set of small cars and the set 

of red cars.

If we are looking for “women and children” and use the selection condition Gender = 'F' 

AND age < 12, we are actually retrieving the intersection of women and children (or girls); 

the rows for older women and boys will be missing. We need the condition to be Gender = 'F' 

OR age < 12.

It is very easy to unwittingly translate the “and” in the English question to an AND in 

the query inappropriately, which can result in missing rows.
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Do You Have Correct Columns in Set Operations?

If your query involves intersection or difference operations, the result may have fewer 

rows than expected because you have projected the wrong columns initially. We looked at 

this in Chapter 7. Here is a brief example for intersection; the same issue applies to differ-

ence operations as well.

We want to find out who has entered both tournaments 25 and 36. We realize that we 

need an intersection and try the query in Listing 11-22.

Listing 11-22. First Attempt at Finding Members Who Have Entered Tournaments 25 and 36

SELECT * FROM Entry

WHERE TourID = 25

INTERSECT

SELECT * FROM Entry

WHERE TourID = 36

No rows will be returned from the query in Listing 11-22, regardless of the underlying 

data. The intersection finds rows that are exactly the same in each set. However, all the 

rows in the first set will have TourID = 25, and all the rows in the second set will have 

TourID = 36. There can never be a row that is in both sets. We are looking for the member 

IDs that are in both sets, so the SELECT clauses in each part of the query should be 

SELECT MemberID FROM Entry.

Listing 11-22 is an extreme example of retaining the wrong columns, resulting in no 

rows being returned. The discussion around Figure 7-14 in Chapter 7 shows how retaining 

different columns can result in fewer rows than expected from a query.

More Rows Than There Should Be

It is often easier to spot extra rows than it is to notice that rows are missing from your query 

result. You only need to see one record that you weren’t expecting, and you can concentrate 

on the different parts of your query to see where it failed to be excluded. Here are a couple 

of causes of extra rows.

Did You Use NOT Instead of Difference?

With questions containing the words “not” or “never,” a sure way to get extra rows is to use 

a selection condition instead of a difference operator in the query. We looked at this issue in 

Chapter 4. To recap, consider a question like “Which members have never entered tourna-

ment 25?” A common first attempt using a select condition is shown in Listing 11-23.
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Listing 11-23. First Attempt at Finding Members Who Have Not Entered Tournament 25

SELECT * FROM Entry

WHERE TourID <> 25

The condition in the WHERE clause checks rows one at a time to see if they should be 

included in the result. If there is a row for member 415 entering tournament 36, then that 

row will be retrieved, regardless of the possibility that another row shows member 415 

entered tournament 25. For example, if member 415 has entered tournament 25 and four 

other tournaments, we will retrieve four rows when we were expecting none.

The correct query for this type of question is to use a nested query (see Chapter 4) or 

the EXCEPT difference operator (see Chapter 7). We need to find the set of all members 

(from the Member table) and remove the set of members who have entered tournament 25 

(from the Entry table). Listings 11-24 and 11-25 show two possibilities.

Listing 11-24. Finding Members Who Have Not Entered Tournament 25 with a Nested Query

SELECT MemberID FROM Member

WHERE MemberID NOT IN

     (SELECT MemberID FROM Entry

      WHERE TourID = 25)

Listing 11-25. Finding Members Who Have Not Entered Tournament 25 with a 

Difference Operator

SELECT MemberID FROM Member

EXCEPT

SELECT MemberID FROM Entry

WHERE TourID = 25

Have You Dealt with Duplicates Appropriately?

It sometimes takes a little thought to decide what needs to be done with duplicate records 

retrieved from a query. By default, SQL will retain all duplicates. The following two requests 

sound similar:

• Give me a list of the names of my customers.

• Give me a list of the cities my customers live in.

In the first, we probably expect as many rows as we have customers; if we have several 

Johns, we expect them all to be retained. In the second, if we have 500 customers living in 

Christchurch, we don’t expect 500 rows to be returned.

In the query to find the cities, we want only the distinct values. Listing 11-26 shows how 

to use the DISTINCT keyword.
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Listing 11-26. Finding the Cities Where Customers Reside

SELECT DISTINCT (City) FROM Customer

Statistics or Aggregates Incorrect

All of the preceding problems can cause incorrect statistics. If you are counting, grouping, 

or averaging, and your underlying query misses rows or returns extra rows, then clearly 

the statistics will be affected. A couple of other things to consider are how Nulls and dupli-

cates are being handled.

SQL will not include any Null fields in its statistics. For example, COUNT(Handicap)

or AVG(Handicap) will ignore any rows with Nulls in the Handicap field. It is also important 

to consider what you want done with duplicates, especially for counting functions. 

COUNT(Handicap) will return the number of members who have a value in the Handicap

column. COUNT(DISTINCT Handicap) will return the number of different values in the Handicap

column—if all the members have a handicap of 20, it will return a count of 1.

The Order Is Wrong

If you have used an ORDER BY clause in your query and you are having problems with the 

order in which the rows are being presented, there is often a problem with the underlying 

data. Review the “Problems with Data Values” section earlier in this chapter. Check that 

the field types are appropriate (for example, numeric values aren’t being stored in text 

fields) and that text values have consistent case and no extraneous characters.

Common Typos and Syntax Problems
Sometimes a query doesn’t run because of some simple problem with the syntax—that 

is, the way the query is worded. Syntax problems involve things like missing brackets or 

incorrect spellings of fields or keywords. Your database will probably give you some error 

message that may or may not be helpful in finding and correcting the problem. Often the 

error message is not helpful, so here are a few things to check:

Quotation marks: Most versions of SQL require single quotation marks around text 

values, such as ‘Smith’ or ‘Junior’, although some use double quotation marks in some 

circumstances. If you are cutting and pasting queries, be sure the correct quotation 

marks have been transferred. When I cut and paste the queries in this book from Word to 

Access, the quotation marks look OK, but I need to reenter them. Also check that all 

the quotation marks are paired correctly. Don’t use quotes around numeric values. 

Something like Handicap < '12' will cause problems if Handicap is a numeric field.
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Parentheses: Parentheses are required in nested queries and also can be used to help 

readability in many queries (such as those with several joins). Check that all the brackets 

are paired correctly.

Names of tables and fields: It seems obvious that you need to get the names of tables 

and fields correct. However, sometimes a simple misspelling of a table name or field 

can cause an unintelligible error message. Check carefully.

Use of aliases: If you use an alias for table names (for example, Member m), check that 

you have associated the correct alias with each field name.

Spelling of keywords: Some software for constructing SQL queries will highlight 

keywords, so it is very apparent if you have spelled them incorrectly. If your version 

doesn’t show this, then check keyword spelling, too. I often type FORM instead of 

FROM or AVERAGE() instead of AVG().

IS Null versus = Null: Some versions of SQL treat these quite differently. IS Null always 

works if you are trying to find fields with a Null value.

Summary
Before you can correct a query, you need to notice that it is wrong in the first place. Always 

check the rows returned from a query, as described in the previous chapter. When you do 

discover errors, the following are some ideas for tracking down the cause of the problem:

• Check that the underlying tables are combined appropriately (join, intersection, 

and so on).

• Simplify the query by removing selection conditions and aggregates to ensure the 

underlying rows are correct.

• Check each part of nested queries or queries involving set operations 

independently.

• Check queries for questions with the words “and” or “not” to ensure you have not 

used selection conditions when you need a set operation or nested query.

• Check that the columns retained in queries with set operations are appropriate.

• Check that Nulls and duplicates have been dealt with properly.

• Check that underlying data types are correct and that data values are consistent.
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Sample Database

Most of the examples in this book use the golf club database. Figure A-1 shows how the 

tables in the database are related, and Figure A-2 shows the data in the tables.

An Access version of this database is available through the Apress web page for this 

book (http://www.apress.com/book/view/1590599438). You will also find SQL scripts for 

creating and populating the tables in common database management systems, such as 

Oracle Database; DB2 for Linux, Unix, and Windows; and MySQL.

Figure A-1. The data model for the golf club database
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Figure A-2. The tables and data for the golf club database

Member table

Entry table Type table

Team table

Tournament table
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